Annihilation of exceptional points from different Dirac valleys in a 2D photonic system

M. Król, I. Septembre, P. Oliwa, M. Kędziora, K. Łempicka-Mirek, M. Muszyński, R. Mazur, P. Morawiak, W. Piecek, P. Kula, W. Bardyszewski, P. G. Lagoudakis, D. D. Solnyshkov*, G. Malpuech*, B. Piętka*, J. Szczytko*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)

Abstract

Topological physics relies on Hamiltonian’s eigenstate singularities carrying topological charges, such as Dirac points, and – in non-Hermitian systems – exceptional points (EPs), lines or surfaces. So far, the reported non-Hermitian topological transitions were related to the creation of a pair of EPs connected by a Fermi arc out of a single Dirac point by increasing non-Hermiticity. Such EPs can annihilate by reducing non-Hermiticity. Here, we demonstrate experimentally that an increase of non-Hermiticity can lead to the annihilation of EPs issued from different Dirac points (valleys). The studied platform is a liquid crystal microcavity with voltage-controlled birefringence and TE-TM photonic spin-orbit-coupling. Non-Hermiticity is provided by polarization-dependent losses. By increasing the non-Hermiticity degree, we control the position of the EPs. After the intervalley annihilation, the system becomes free of any band singularity. Our results open the field of non-Hermitian valley-physics and illustrate connections between Hermitian topology and non-Hermitian phase transitions.

Original languageEnglish
Article number5340
JournalNature Communications
Volume13
Issue number1
DOIs
Publication statusPublished - Dec 2022
Externally publishedYes

Fingerprint

Dive into the research topics of 'Annihilation of exceptional points from different Dirac valleys in a 2D photonic system'. Together they form a unique fingerprint.

Cite this