TY - GEN
T1 - Any-Shot Object Detection
AU - Rahman, Shafin
AU - Khan, Salman
AU - Barnes, Nick
AU - Khan, Fahad Shahbaz
N1 - Publisher Copyright:
© 2021, Springer Nature Switzerland AG.
PY - 2021
Y1 - 2021
N2 - Previous work on novel object detection considers zero or few-shot settings where none or few examples of each category are available for training. In real world scenarios, it is less practical to expect that ‘all’ the novel classes are either unseen or have few-examples. Here, we propose a more realistic setting termed ‘Any-shot detection’, where totally unseen and few-shot categories can simultaneously co-occur during inference. Any-shot detection offers unique challenges compared to conventional novel object detection such as, a high imbalance between unseen, few-shot and seen object classes, susceptibility to forget base-training while learning novel classes and distinguishing novel classes from the background. To address these challenges, we propose a unified any-shot detection model, that can concurrently learn to detect both zero-shot and few-shot object classes. Our core idea is to use class semantics as prototypes for object detection, a formulation that naturally minimizes knowledge forgetting and mitigates the class-imbalance in the label space. Besides, we propose a rebalanced loss function that emphasizes difficult few-shot cases but avoids overfitting on the novel classes to allow detection of totally unseen classes. Without bells and whistles, our framework can also be used solely for Zero-shot object detection and Few-shot object detection tasks. We report extensive experiments on Pascal VOC and MS-COCO datasets where our approach is shown to provide significant improvements.
AB - Previous work on novel object detection considers zero or few-shot settings where none or few examples of each category are available for training. In real world scenarios, it is less practical to expect that ‘all’ the novel classes are either unseen or have few-examples. Here, we propose a more realistic setting termed ‘Any-shot detection’, where totally unseen and few-shot categories can simultaneously co-occur during inference. Any-shot detection offers unique challenges compared to conventional novel object detection such as, a high imbalance between unseen, few-shot and seen object classes, susceptibility to forget base-training while learning novel classes and distinguishing novel classes from the background. To address these challenges, we propose a unified any-shot detection model, that can concurrently learn to detect both zero-shot and few-shot object classes. Our core idea is to use class semantics as prototypes for object detection, a formulation that naturally minimizes knowledge forgetting and mitigates the class-imbalance in the label space. Besides, we propose a rebalanced loss function that emphasizes difficult few-shot cases but avoids overfitting on the novel classes to allow detection of totally unseen classes. Without bells and whistles, our framework can also be used solely for Zero-shot object detection and Few-shot object detection tasks. We report extensive experiments on Pascal VOC and MS-COCO datasets where our approach is shown to provide significant improvements.
UR - http://www.scopus.com/inward/record.url?scp=85103291228&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-69535-4_6
DO - 10.1007/978-3-030-69535-4_6
M3 - Conference contribution
SN - 9783030695347
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 89
EP - 106
BT - Computer Vision – ACCV 2020 - 15th Asian Conference on Computer Vision, 2020, Revised Selected Papers
A2 - Ishikawa, Hiroshi
A2 - Liu, Cheng-Lin
A2 - Pajdla, Tomas
A2 - Shi, Jianbo
PB - Springer Science and Business Media Deutschland GmbH
T2 - 15th Asian Conference on Computer Vision, ACCV 2020
Y2 - 30 November 2020 through 4 December 2020
ER -