Applying the Tremaine-Weinberg Method to Nearby Galaxies: Stellar-mass-based Pattern Speeds and Comparisons with ISM Kinematics

Thomas G. Williams*, Eva Schinnerer, Eric Emsellem, Sharon Meidt, Miguel Querejeta, Francesco Belfiore, Ivana Bešlić, Frank Bigiel, Mélanie Chevance, Daniel A. Dale, Simon C.O. Glover, Kathryn Grasha, Ralf S. Klessen, J. M. Diederik Kruijssen, Adam K. Leroy, Hsi An Pan, Jérôme Pety, Ismael Pessa, Erik Rosolowsky, Toshiki SaitoFrancesco Santoro, Andreas Schruba, Mattia C. Sormani, Jiayi Sun, Elizabeth J. Watkins

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    8 Citations (Scopus)

    Abstract

    We apply the Tremaine-Weinberg method to 19 nearby galaxies using stellar mass surface densities and velocities derived from the PHANGS-MUSE survey, to calculate (primarily bar) pattern speeds (ΩP). After quality checks, we find that around half (10) of these stellar-mass-based measurements are reliable. For those galaxies, we find good agreement between our results and previously published pattern speeds, and we use rotation curves to calculate major resonance locations (corotation radii and Lindblad resonances). We also compare these stellar-mass-derived pattern speeds with Hα (from MUSE) and CO(J = 2 - 1) emission from the PHANGS-ALMA survey. We find that in the case of these clumpy interstellar medium (ISM) tracers, this method erroneously gives a signal that is simply the angular frequency at a representative radius set by the distribution of these clumps (Ωclump), and that this Ωclump is significantly different from ΩP (∼20% in the case of Hα, and ∼50% in the case of CO). Thus, we conclude that it is inadvisable to use "pattern speeds"derived from ISM kinematics. Finally, we compare our derived pattern speeds and corotation radii, along with bar properties, to the global parameters of these galaxies. Consistent with previous studies, we find that galaxies with a later Hubble type have a larger ratio of corotation radius to bar length, more molecular-gas-rich galaxies have higher ΩP, and more bulge-dominated galaxies have lower ΩP. Unlike earlier works, however, there are no clear trends between the bar strength and ΩP, nor between the total stellar mass surface density and the pattern speed.

    Original languageEnglish
    JournalAstronomical Journal
    Volume161
    Issue number4
    DOIs
    Publication statusPublished - 1 Apr 2021

    Fingerprint

    Dive into the research topics of 'Applying the Tremaine-Weinberg Method to Nearby Galaxies: Stellar-mass-based Pattern Speeds and Comparisons with ISM Kinematics'. Together they form a unique fingerprint.

    Cite this