Approximating the solution of the chemical master equation by aggregation

M. Hegland*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    5 Citations (Scopus)

    Abstract

    The chemical master equation is a continuous time discrete space Markov model of chemical reactions. The chemical master equation is derived mathematically and it is shown that the corresponding initial value problem has a unique solution. Conditions are given under which this solution is a probability distribution. We present finite state and aggregation-disaggregation approximations and provide error bounds for the case of piecewise constant disaggregation. The aggregation-disaggregation approximation allows the solution of the chemical master equation for larger state spaces and is also an important tool for the solution of multidimensional problems.

    Original languageEnglish
    Pages (from-to)C371-C384
    JournalANZIAM Journal
    Volume50
    Issue numberSUPPL.
    Publication statusPublished - 2008

    Fingerprint

    Dive into the research topics of 'Approximating the solution of the chemical master equation by aggregation'. Together they form a unique fingerprint.

    Cite this