TY - GEN
T1 - Approximation Algorithms for the Team Orienteering Problem
AU - Xu, Wenzheng
AU - Xu, Zichuan
AU - Peng, Jian
AU - Liang, Weifa
AU - Liu, Tang
AU - Jia, Xiaohua
AU - Das, Sajal K.
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/7
Y1 - 2020/7
N2 - In this paper we study a team orienteering problem, which is to find service paths for multiple vehicles in a network such that the profit sum of serving the nodes in the paths is maximized, subject to the cost budget of each vehicle. This problem has many potential applications in IoT and smart cities, such as dispatching energy-constrained mobile chargers to charge as many energy-critical sensors as possible to prolong the network lifetime. In this paper, we first formulate the team orienteering problem, where different vehicles are different types, each node can be served by multiple vehicles, and the profit of serving the node is a submodular function of the number of vehicles serving it. We then propose a novel \left( {1 - {{(1/e)}^{\frac{1}{{2 + \varepsilon }}}}} \right) approximation algorithm for the problem, where ϵ is a given constant with 0 < ϵ≤ 1 and e is the base of the natural logarithm. In particular, the approximation ratio is no less than 0.32 when ϵ= 0.5. In addition, for a special team orienteering problem with the same type of vehicles and the profits of serving a node once and multiple times being the same, we devise an improved approximation algorithm. Finally, we evaluate the proposed algorithms with simulation experiments, and the results of which are very promising. Precisely, the profit sums delivered by the proposed algorithms are approximately 12.5% to 17.5% higher than those by existing algorithms.
AB - In this paper we study a team orienteering problem, which is to find service paths for multiple vehicles in a network such that the profit sum of serving the nodes in the paths is maximized, subject to the cost budget of each vehicle. This problem has many potential applications in IoT and smart cities, such as dispatching energy-constrained mobile chargers to charge as many energy-critical sensors as possible to prolong the network lifetime. In this paper, we first formulate the team orienteering problem, where different vehicles are different types, each node can be served by multiple vehicles, and the profit of serving the node is a submodular function of the number of vehicles serving it. We then propose a novel \left( {1 - {{(1/e)}^{\frac{1}{{2 + \varepsilon }}}}} \right) approximation algorithm for the problem, where ϵ is a given constant with 0 < ϵ≤ 1 and e is the base of the natural logarithm. In particular, the approximation ratio is no less than 0.32 when ϵ= 0.5. In addition, for a special team orienteering problem with the same type of vehicles and the profits of serving a node once and multiple times being the same, we devise an improved approximation algorithm. Finally, we evaluate the proposed algorithms with simulation experiments, and the results of which are very promising. Precisely, the profit sums delivered by the proposed algorithms are approximately 12.5% to 17.5% higher than those by existing algorithms.
KW - Index Terms - Multiple vehicle scheduling
KW - approximation algorithms
KW - submodular function.
KW - team orienteering problem
UR - http://www.scopus.com/inward/record.url?scp=85090269832&partnerID=8YFLogxK
U2 - 10.1109/INFOCOM41043.2020.9155343
DO - 10.1109/INFOCOM41043.2020.9155343
M3 - Conference contribution
T3 - Proceedings - IEEE INFOCOM
SP - 1389
EP - 1398
BT - INFOCOM 2020 - IEEE Conference on Computer Communications
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 38th IEEE Conference on Computer Communications, INFOCOM 2020
Y2 - 6 July 2020 through 9 July 2020
ER -