TY - JOUR
T1 - Archean granite-greenstone tectonics at Kolar (South India)
T2 - Interplay of diapirism and bulk inhomogeneous contraction during juvenile magmatic accretion
AU - Chardon, Dominique
AU - Peucat, Jean Jacques
AU - Jayananda, Mudlappa
AU - Choukroune, Pierre
AU - Fanning, C. Mark
PY - 2002/6
Y1 - 2002/6
N2 - The structural study of the Kolar greenstone belt and surrounding granite-gneiss terrains combined with U-Pb dating reveals that the middle and lower crustal tectonoplutonic pattern of the eastern Dharwar craton developed during a major magmatic accretion event between 2550 and 2530 Ma. The granite-greenstone pattern resulted from the interference of gravity-driven sagging of the greenstones (i.e., diapirism), E-W bulk inhomogeneous shortening combined with horizontal N-S stretching, and syntectonic juvenile pluton emplacement. Bulk inhomogeneous contraction is accommodated by the synchronous development of a pervasive, N-S trending vertical foliation, shallow stretching lineation, and conjugate strike-slip shear zone pattern within and outside the greenstone belt, resulting in regional horizontal pure shear deformation. The plutons around the greenstone belt record regional contraction by developing one set of strike-slip C-S fabrics of the shear zone pattern. The development of the granite-greenstone pattern was coeval and compatible with deformation during juvenile magmatic accretion, melting, and granulite metamorphism in the lower crust. The Kolar example points to a specific crustal rheology that allowed sagduction of the greenstones and regional distributed bulk inhomogeneous strain, due to mechanical homogeneity and low viscosity provided by large-scale melting during the accretion event. This example further suggests specific boundary conditions to the craton that allowed E-W inhomogeneous shortening to be accommodated by N-S stretching and spreading of the crust without significant tectonic thickening. Such tectonoplutonic pattern is specific to the Archean and may develop as a consequence of mantle plume activity in intracontinental settings.
AB - The structural study of the Kolar greenstone belt and surrounding granite-gneiss terrains combined with U-Pb dating reveals that the middle and lower crustal tectonoplutonic pattern of the eastern Dharwar craton developed during a major magmatic accretion event between 2550 and 2530 Ma. The granite-greenstone pattern resulted from the interference of gravity-driven sagging of the greenstones (i.e., diapirism), E-W bulk inhomogeneous shortening combined with horizontal N-S stretching, and syntectonic juvenile pluton emplacement. Bulk inhomogeneous contraction is accommodated by the synchronous development of a pervasive, N-S trending vertical foliation, shallow stretching lineation, and conjugate strike-slip shear zone pattern within and outside the greenstone belt, resulting in regional horizontal pure shear deformation. The plutons around the greenstone belt record regional contraction by developing one set of strike-slip C-S fabrics of the shear zone pattern. The development of the granite-greenstone pattern was coeval and compatible with deformation during juvenile magmatic accretion, melting, and granulite metamorphism in the lower crust. The Kolar example points to a specific crustal rheology that allowed sagduction of the greenstones and regional distributed bulk inhomogeneous strain, due to mechanical homogeneity and low viscosity provided by large-scale melting during the accretion event. This example further suggests specific boundary conditions to the craton that allowed E-W inhomogeneous shortening to be accommodated by N-S stretching and spreading of the crust without significant tectonic thickening. Such tectonoplutonic pattern is specific to the Archean and may develop as a consequence of mantle plume activity in intracontinental settings.
KW - Continental deformation
KW - Granulite
KW - Greenstone belt
KW - Pluton emplacement
KW - Shear zones
UR - http://www.scopus.com/inward/record.url?scp=0036625253&partnerID=8YFLogxK
U2 - 10.1029/2001TC901032
DO - 10.1029/2001TC901032
M3 - Article
SN - 0278-7407
VL - 21
SP - 7 1-7-17
JO - Tectonics
JF - Tectonics
IS - 3
ER -