Abstract
High time resolution radio surveys over the last few years have discovered a population of millisecond-duration transient bursts called fast radio bursts (FRBs), which remain of unknown origin. FRBs exhibit dispersion consistent with propagation through a cold plasma and dispersion measures indicative of an origin at cosmological distances. In this paper, we perform Monte Carlo simulations of a cosmological population of FRBs, based on assumptions consistent with observations of their energy distribution, their spatial density as a function of redshift and the properties of the interstellar and intergalactic media.We examine whether the dispersion measures, fluences, derived redshifts, signal-to-noise ratios and effective widths of known FRBs are consistent with a cosmological population. Statistical analyses indicate that at least 50 events at Parkes are required to distinguish between a constant comoving FRB density, and an FRB density that evolves with redshift like the cosmological star formation rate density.
Original language | English |
---|---|
Pages (from-to) | 708-717 |
Number of pages | 10 |
Journal | Monthly Notices of the Royal Astronomical Society |
Volume | 458 |
Issue number | 1 |
DOIs | |
Publication status | Published - 22 Feb 2016 |