ArGue: Attribute-Guided Prompt Tuning for Vision-Language Models

Xinyu Tian, Shu Zou, Zhaoyuan Yang, Jing Zhang

Research output: Contribution to journalConference articlepeer-review

12 Citations (Scopus)

Abstract

Although soft prompt tuning is effective in efficiently adapting Vision-Language (V&L) models for downstream tasks, it shows limitations in dealing with distribution shifts. We address this issue with Attribute-Guided Prompt Tuning (ArGue), making three key contributions. 1) In contrast to the conventional approach of directly appending soft prompts preceding class names, we align the model with primitive visual attributes generated by Large language Models (LLMs). We posit that a model's ability to express high confidence in these attributes signifies its capacity to discern the correct class rationales. 2) We introduce attribute sampling to eliminate disadvantageous attributes, thus only semantically meaningful attributes are preserved. 3) We propose negative prompting, explicitly enumerating class-agnostic attributes to activate spurious correlations and encourage the model to generate highly orthogonal probability distributions in relation to these negative features. In experiments, our method significantly out-performs current state-of-the-art prompt tuning methods on both novel class prediction and out-of-distribution generalization tasks. The code is available https://github.com/Liam-Tian/ArGue.

Original languageEnglish
Pages (from-to)28578-28587
Number of pages10
JournalProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
DOIs
Publication statusPublished - 2024
Event2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 - Seattle, United States
Duration: 16 Jun 202422 Jun 2024

Fingerprint

Dive into the research topics of 'ArGue: Attribute-Guided Prompt Tuning for Vision-Language Models'. Together they form a unique fingerprint.

Cite this