TY - JOUR
T1 - Assessment of 1/f noise associated with nanopores fabricated through chemically tuned controlled dielectric breakdown
AU - Saharia, Jugal
AU - Bandara, Y. M.Nuwan D.Y.
AU - Karawdeniya, Buddini I.
AU - Alexandrakis, George
AU - Kim, Min Jun
N1 - Publisher Copyright:
© 2020 Wiley-VCH GmbH
PY - 2021/4
Y1 - 2021/4
N2 - Recently, we developed a fabrication method—chemically-tuned controlled dielectric breakdown (CT-CDB)—that produces nanopores (through thin silicon nitride membranes) surpassing legacy drawbacks associated with solid-state nanopores (SSNs). However, the noise characteristics of CT-CDB nanopores are largely unexplored. In this work, we investigated the 1/f noise of CT-CDB nanopores of varying solution pH, electrolyte type, electrolyte concentration, applied voltage, and pore diameter. Our findings indicate that the bulk Hooge parameter (αb) is about an order of magnitude greater than SSNs fabricated by transmission electron microscopy (TEM) while the surface Hooge parameter (αs) is ∼3 order magnitude greater. Theαs of CT-CDB nanopores was ∼5 orders of magnitude greater than theirαb, which suggests that the surface contribution plays a dominant role in 1/f noise. Experiments with DNA exhibited increasing capture rates with pH up to pH ∼8 followed by a drop at pH ∼9 perhaps due to the onset of electroosmotic force acting against the electrophoretic force. The1/f noise was also measured for several electrolytes and LiCl was found to outperform NaCl, KCl, RbCl, and CsCl. The 1/f noise was found to increase with the increasing electrolyte concentration and pore diameter. Taken together, the findings of this work suggest the pH approximate 7–8 range to be optimal for DNA sensing with CT-CDB nanopores.
AB - Recently, we developed a fabrication method—chemically-tuned controlled dielectric breakdown (CT-CDB)—that produces nanopores (through thin silicon nitride membranes) surpassing legacy drawbacks associated with solid-state nanopores (SSNs). However, the noise characteristics of CT-CDB nanopores are largely unexplored. In this work, we investigated the 1/f noise of CT-CDB nanopores of varying solution pH, electrolyte type, electrolyte concentration, applied voltage, and pore diameter. Our findings indicate that the bulk Hooge parameter (αb) is about an order of magnitude greater than SSNs fabricated by transmission electron microscopy (TEM) while the surface Hooge parameter (αs) is ∼3 order magnitude greater. Theαs of CT-CDB nanopores was ∼5 orders of magnitude greater than theirαb, which suggests that the surface contribution plays a dominant role in 1/f noise. Experiments with DNA exhibited increasing capture rates with pH up to pH ∼8 followed by a drop at pH ∼9 perhaps due to the onset of electroosmotic force acting against the electrophoretic force. The1/f noise was also measured for several electrolytes and LiCl was found to outperform NaCl, KCl, RbCl, and CsCl. The 1/f noise was found to increase with the increasing electrolyte concentration and pore diameter. Taken together, the findings of this work suggest the pH approximate 7–8 range to be optimal for DNA sensing with CT-CDB nanopores.
KW - Chemically tuned controlled dielectric breakdown
KW - Hooge parameter
KW - Nanopore
UR - http://www.scopus.com/inward/record.url?scp=85099051131&partnerID=8YFLogxK
U2 - 10.1002/elps.202000285
DO - 10.1002/elps.202000285
M3 - Article
SN - 0173-0835
VL - 42
SP - 899
EP - 909
JO - Electrophoresis
JF - Electrophoresis
IS - 7-8
ER -