TY - JOUR
T1 - Assessment of the efficiency of long-range corrected functionals for some properties of large compounds
AU - Jacquemin, Denis
AU - Perpète, Eric A.
AU - Scalmani, Giovanni
AU - Frisch, Michael J.
AU - Kobayashi, Rika
AU - Adamo, Carlo
PY - 2007
Y1 - 2007
N2 - Using the long-range correction (LC) density functional theory (DFT) scheme introduced by likura et al. [J. Chem. Phys. 115, 3540 (2001)] and the Coulomb-attenuating model (CAM-B3LYP) of Yanai et al. [Chem. Phys. Lett. 393, 51 (2004)], we have calculated a series of properties that are known to be poorly reproduced by standard functionals: Bond length alternation of π-conjugated polymers, polarizabilities of delocalized chains, and electronic spectra of extended dyes. For each of these properties, we present cases in which traditional hybrid functionals do provide accurate results and cases in which they fail to reproduce the correct trends. The quality of the results is assessed with regard to experimental values and/or data arising from electron-correlated wave function approaches. It turns out that (i) both LC-DFT and CAM-B3LYP provide an accurate bond length alternation for polyacetylene and polymethineimine, although for the latter they decrease slightly too rapidly with chain length, (ii) The LC generalized gradient approximation and MP2 polarizabilities of long polyphosphazene and polymethineimine oligomers agree almost perfectly. In the same way, CAM-B3LYP corrects the major part of the B3LYP faults, (iii) LC and CAM techniques do not help in correcting the nonrealistic evolution with chain length of the absorption wavelengths of cyanine derivatives. In addition, though both schemes significantly overestimate the ground to excited state transition energy of substituted anthraquinone dyes, they provide a more consistent picture once a statistical treatment is performed than do traditional hybrid functionals.
AB - Using the long-range correction (LC) density functional theory (DFT) scheme introduced by likura et al. [J. Chem. Phys. 115, 3540 (2001)] and the Coulomb-attenuating model (CAM-B3LYP) of Yanai et al. [Chem. Phys. Lett. 393, 51 (2004)], we have calculated a series of properties that are known to be poorly reproduced by standard functionals: Bond length alternation of π-conjugated polymers, polarizabilities of delocalized chains, and electronic spectra of extended dyes. For each of these properties, we present cases in which traditional hybrid functionals do provide accurate results and cases in which they fail to reproduce the correct trends. The quality of the results is assessed with regard to experimental values and/or data arising from electron-correlated wave function approaches. It turns out that (i) both LC-DFT and CAM-B3LYP provide an accurate bond length alternation for polyacetylene and polymethineimine, although for the latter they decrease slightly too rapidly with chain length, (ii) The LC generalized gradient approximation and MP2 polarizabilities of long polyphosphazene and polymethineimine oligomers agree almost perfectly. In the same way, CAM-B3LYP corrects the major part of the B3LYP faults, (iii) LC and CAM techniques do not help in correcting the nonrealistic evolution with chain length of the absorption wavelengths of cyanine derivatives. In addition, though both schemes significantly overestimate the ground to excited state transition energy of substituted anthraquinone dyes, they provide a more consistent picture once a statistical treatment is performed than do traditional hybrid functionals.
UR - http://www.scopus.com/inward/record.url?scp=34247199000&partnerID=8YFLogxK
U2 - 10.1063/1.2715573
DO - 10.1063/1.2715573
M3 - Article
SN - 0021-9606
VL - 126
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 14
M1 - 144105
ER -