Abstract
The structures of many important functional oxides contain networks of metal-oxygen polyhedral unitsi.e. MOn. The correlation between the configurations and connectivities of these MOn to properties is essentially important to be well established to conduct the design, synthesis and application of new MOn-based functional materials. In this paper, we report on an atomic-scale solution-chemistry approach that for the first time enables TiO6 octahedral network control starting from metastable brookite TiO2 through simultaneously tuning pH values and interfering ions (Fe3+, Sc3+, and Sm3+). The relationship between solution chemistry and the resultant configuration/connectivity of TiO6 octahedra in TiO2 and lepidocrocite titanate is mapped out. Apart from differing crystalline phases and morphologies, atomic-scale TiO6 octahedral control also endows numerous defect dipoles for giant dielectric responses. The structural and property evolutions are well interpreted by the associated H+/OH- species in solution and/or defect states associated with Fe3+ occupation within TiO6 octahedra. This work therefore provides fundamental new insights into controlling TiO6 octahedral arrangement essential for atomic-scale structure-property design.
Original language | English |
---|---|
Article number | 6582 |
Journal | Scientific Reports |
Volume | 4 |
DOIs | |
Publication status | Published - 10 Oct 2014 |