TY - JOUR
T1 - Atorvastatin protects obese mice against hepatic ischemia-reperfusion injury by Toll-like receptor-4 suppression and endothelial nitric oxide synthase activation
AU - Ajamieh, Hussam
AU - Farrell, Geoffrey
AU - Wong, Heng Jian
AU - Yu, Jun
AU - Chu, Eagle
AU - Chen, Jeffrey
AU - Teoh, Narci
PY - 2012/8
Y1 - 2012/8
N2 - Background and Aim: Steatosis accentuates the severity of hepatic ischemia-reperfusion injury (IRI). 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors ("statins") protect the heart and brain against post-ischemic injury, without necessarily lowering serum cholesterol. We tested whether 10-day or 1-day atorvastatin administration protects livers with fatty change or non-alcoholic steatohepatitis (NASH) against IRI. Methods: Mice with dietary or genetic simple steatosis (SS) or NASH were subjected to 60min of partial hepatic ischemia/24-h reperfusion, with/without atorvastatin administered with food (5mg/kg body weight) for 10days, or injected intravenously (5mg/kg) 24h before ischemia. Liver injury, Toll-like receptor-4 (TLR4), cytokines/chemokines, endothelial nitric oxide synthase (eNOS), activation and thromboxane B2 production were determined. Results: Atorvastatin conferred 70-90% hepatic protection against IRI in obese animals with SS or NASH, in which IRI was accentuated twofold to fivefold. IRI markedly upregulated TLR4 and activated nuclear factor-κB (NF-κB); atorvastatin abrogated these effects, as well as activating eNOS. Atorvastatin dampened the post-ischemic induction of thromboxane B2, macrophage inflammatory protein-1a, monocyte chemotactic protein-1, tumor necrosis factor-α, interleukin (IL)-12 p40, γ-interferon, IL-6, and adhesion molecules (vascular cell adhesion molecule-1, E-selectin, vascular endothelial-cadherin), and reduced macrophage and neutrophil recruitment. There was no reduction in serum cholesterol that could explain these effects, and hepatic cholesterol was normal in these mice. A single 24-h injection of atorvastatin conferred equivalent hepatoprotection. Conclusion: Statins exert major hepatoprotection against IRI in lean, fatty, and NASH livers that is not due to cholesterol removal. Rather, statins downregulate TLR4 to prevent NF-κB activation, with resultant suppression of adhesion molecules, chemokines/cytokines, and thromboxane B2 production. Short-term statin treatment is an effective, readily-available preventive agent against hepatic IRI, irrespective of obesity and fatty liver disease.
AB - Background and Aim: Steatosis accentuates the severity of hepatic ischemia-reperfusion injury (IRI). 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors ("statins") protect the heart and brain against post-ischemic injury, without necessarily lowering serum cholesterol. We tested whether 10-day or 1-day atorvastatin administration protects livers with fatty change or non-alcoholic steatohepatitis (NASH) against IRI. Methods: Mice with dietary or genetic simple steatosis (SS) or NASH were subjected to 60min of partial hepatic ischemia/24-h reperfusion, with/without atorvastatin administered with food (5mg/kg body weight) for 10days, or injected intravenously (5mg/kg) 24h before ischemia. Liver injury, Toll-like receptor-4 (TLR4), cytokines/chemokines, endothelial nitric oxide synthase (eNOS), activation and thromboxane B2 production were determined. Results: Atorvastatin conferred 70-90% hepatic protection against IRI in obese animals with SS or NASH, in which IRI was accentuated twofold to fivefold. IRI markedly upregulated TLR4 and activated nuclear factor-κB (NF-κB); atorvastatin abrogated these effects, as well as activating eNOS. Atorvastatin dampened the post-ischemic induction of thromboxane B2, macrophage inflammatory protein-1a, monocyte chemotactic protein-1, tumor necrosis factor-α, interleukin (IL)-12 p40, γ-interferon, IL-6, and adhesion molecules (vascular cell adhesion molecule-1, E-selectin, vascular endothelial-cadherin), and reduced macrophage and neutrophil recruitment. There was no reduction in serum cholesterol that could explain these effects, and hepatic cholesterol was normal in these mice. A single 24-h injection of atorvastatin conferred equivalent hepatoprotection. Conclusion: Statins exert major hepatoprotection against IRI in lean, fatty, and NASH livers that is not due to cholesterol removal. Rather, statins downregulate TLR4 to prevent NF-κB activation, with resultant suppression of adhesion molecules, chemokines/cytokines, and thromboxane B2 production. Short-term statin treatment is an effective, readily-available preventive agent against hepatic IRI, irrespective of obesity and fatty liver disease.
KW - Atorvastatin
KW - Liver inflammation
KW - Non-alcoholic fatty liver disease
KW - Nuclear factor-κB
KW - Toll-like receptor-4
UR - http://www.scopus.com/inward/record.url?scp=84864302073&partnerID=8YFLogxK
U2 - 10.1111/j.1440-1746.2012.07123.x
DO - 10.1111/j.1440-1746.2012.07123.x
M3 - Article
SN - 0815-9319
VL - 27
SP - 1353
EP - 1361
JO - Journal of Gastroenterology and Hepatology (Australia)
JF - Journal of Gastroenterology and Hepatology (Australia)
IS - 8
ER -