Australian Precipitation Recycling and Evaporative Source Regions

C. M. Holgate*, J. P. Evans, I. J.M.Van Dijk, J. Pitman, G. D.I. Virgilio

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    43 Citations (Scopus)

    Abstract

    The relative importance of atmospheric advection and local land-atmosphere coupling to Australian precipitation is uncertain. Identifying the evaporative source regions and level of precipitation recycling can help quantify the importance of local and remotemarine and terrestrialmoisture to precipitation within the different hydroclimates acrossAustralia.Using a three-dimensional Lagrangian back-trajectory approach,moisture from precipitation events across Australia during 1979-2013 was tracked to determine the source of moisture (the evaporative origin) and level of precipitation recycling. We show that source regions vary markedly for precipitation falling in different regions. Advected marine moisture was relatively more important than terrestrial contributions for precipitation in all regions and seasons. For Australia as a whole, contributions from precipitation recycling varied from ;11%in winter up to;21%in summer. The strongest land-atmosphere coupling was in the northwest and southeastwhere recycled local land evapotranspiration accounted for an average of 9% of warm-season precipitation. Marine contributions to precipitation in the northwest of Australia increased in spring and, coupled with positive evaporation trends in the key source regions, suggest that the observed precipitation increase is the result of intensified evaporation in the Maritime Continent and Indian and Pacific Oceans. Less clear were the processes behind an observed shift in moisture contribution fromwinter to summer in southeastern Australia. Establishing the climatological source regions and the magnitude of moisture recycling enables future investigation of anomalous precipitation during extreme periods and provides further insight into the processes driving Australia's variable precipitation.

    Original languageEnglish
    Pages (from-to)8721-8735
    Number of pages15
    JournalJournal of Climate
    Volume33
    Issue number20
    DOIs
    Publication statusPublished - Sept 2020

    Fingerprint

    Dive into the research topics of 'Australian Precipitation Recycling and Evaporative Source Regions'. Together they form a unique fingerprint.

    Cite this