Balloon UV experiments for astronomical and atmospheric observations

A. G. Sreejith*, Joice Mathew, Mayuresh Sarpotdar, K. Nirmal, S. Ambily, Ajin Prakash, Margarita Safonova, Jayant Murthy

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Citations (Scopus)

Abstract

The ultraviolet (UV) window has been largely unexplored through balloons for astronomy. We discuss here the development of a compact near-UV spectrograph with fiber optics input for balloon flights. It is a modified Czerny-Turner system built using off-the-shelf components. The system is portable and scalable to different telescopes. The use of reflecting optics reduces the transmission loss in the UV. It employs an image-intensified CMOS sensor, operating in photon counting mode, as the detector of choice. A lightweight pointing system developed for stable pointing to observe astronomical sources is also discussed, together with the methods to improve its accuracy, e.g. using the in-house build star sensor and others. Our primary scientific objectives include the observation of bright Solar System objects such as visible to eye comets, Moon and planets. Studies of planets can give us valuable information about the planetary aurorae, helping to model and compare atmospheres of other planets and the Earth. The other major objective is to look at the diffuse UV atmospheric emission features (airglow lines), and at column densities of trace gases. This UV window includes several lines important to atmospheric chemistry, e.g. SO2, O3, HCHO, BrO. The spectrograph enables simultaneous measurement of various trace gases, as well as provides better accuracy at higher altitudes compared to electromechanical trace gas measurement sondes. These lines contaminate most astronomical observations but are poorly characterized. Other objectives may include sprites in the atmosphere and meteor ashes from high altitude burn-outs. Our recent experiments and observations with high-altitude balloons are discussed.

Original languageEnglish
Title of host publicationGround-Based and Airborne Instrumentation for Astronomy VI
EditorsLuc Simard, Christopher J. Evans, Hideki Takami
PublisherSPIE
ISBN (Electronic)9781510601956
DOIs
Publication statusPublished - 2016
Externally publishedYes
EventGround-Based and Airborne Instrumentation for Astronomy VI - Edinburgh, United Kingdom
Duration: 26 Jun 201630 Jun 2016

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume9908
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceGround-Based and Airborne Instrumentation for Astronomy VI
Country/TerritoryUnited Kingdom
CityEdinburgh
Period26/06/1630/06/16

Fingerprint

Dive into the research topics of 'Balloon UV experiments for astronomical and atmospheric observations'. Together they form a unique fingerprint.

Cite this