Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density

Han Lin Shang

    Research output: Contribution to journalArticlepeer-review

    32 Citations (Scopus)

    Abstract

    We investigate the issue of bandwidth estimation in a functional nonparametric regression model with function-valued, continuous real-valued and discrete-valued regressors under the framework of unknown error density. Extending from the recent work of Shang (2013) ['Bayesian Bandwidth Estimation for a Nonparametric Functional Regression Model with Unknown Error Density', Computational Statistics & Data Analysis, 67, 185-198], we approximate the unknown error density by a kernel density estimator of residuals, where the regression function is estimated by the functional Nadaraya-Watson estimator that admits mixed types of regressors. We derive a likelihood and posterior density for the bandwidth parameters under the kernel-form error density, and put forward a Bayesian bandwidth estimation approach that can simultaneously estimate the bandwidths. Simulation studies demonstrated the estimation accuracy of the regression function and error density for the proposed Bayesian approach. Illustrated by a spectroscopy data set in the food quality control, we applied the proposed Bayesian approach to select the optimal bandwidths in a functional nonparametric regression model with mixed types of regressors.

    Original languageEnglish
    Pages (from-to)599-615
    Number of pages17
    JournalJournal of Nonparametric Statistics
    Volume26
    Issue number3
    DOIs
    Publication statusPublished - Jul 2014

    Fingerprint

    Dive into the research topics of 'Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density'. Together they form a unique fingerprint.

    Cite this