TY - JOUR
T1 - Bayesian bandwidth estimation for local linear fitting in nonparametric regression models
AU - Shang, Han Lin
AU - Zhang, Xibin
N1 - Publisher Copyright:
© 2020 Walter de Gruyter GmbH, Berlin/Boston.
PY - 2022/2/1
Y1 - 2022/2/1
N2 - This paper presents a Bayesian sampling approach to bandwidth estimation for the local linear estimator of the regression function in a nonparametric regression model. In the Bayesian sampling approach, the error density is approximated by a location-mixture density of Gaussian densities with means the individual errors and variance a constant parameter. This mixture density has the form of a kernel density estimator of errors and is referred to as the kernel-form error density (c.f. Zhang, X., M. L. King, and H. L. Shang. 2014. "A Sampling Algorithm for Bandwidth Estimation in a Nonparametric Regression Model with a Flexible Error Density."Computational Statistics & Data Analysis 78: 218-34.). While (Zhang, X., M. L. King, and H. L. Shang. 2014. "A Sampling Algorithm for Bandwidth Estimation in a Nonparametric Regression Model with a Flexible Error Density."Computational Statistics & Data Analysis 78: 218-34) use the local constant (also known as the Nadaraya-Watson) estimator to estimate the regression function, we extend this to the local linear estimator, which produces more accurate estimation. The proposed investigation is motivated by the lack of data-driven methods for simultaneously choosing bandwidths in the local linear estimator of the regression function and kernel-form error density. Treating bandwidths as parameters, we derive an approximate (pseudo) likelihood and a posterior. A simulation study shows that the proposed bandwidth estimation outperforms the rule-of-thumb and cross-validation methods under the criterion of integrated squared errors. The proposed bandwidth estimation method is validated through a nonparametric regression model involving firm ownership concentration, and a model involving state-price density estimation.
AB - This paper presents a Bayesian sampling approach to bandwidth estimation for the local linear estimator of the regression function in a nonparametric regression model. In the Bayesian sampling approach, the error density is approximated by a location-mixture density of Gaussian densities with means the individual errors and variance a constant parameter. This mixture density has the form of a kernel density estimator of errors and is referred to as the kernel-form error density (c.f. Zhang, X., M. L. King, and H. L. Shang. 2014. "A Sampling Algorithm for Bandwidth Estimation in a Nonparametric Regression Model with a Flexible Error Density."Computational Statistics & Data Analysis 78: 218-34.). While (Zhang, X., M. L. King, and H. L. Shang. 2014. "A Sampling Algorithm for Bandwidth Estimation in a Nonparametric Regression Model with a Flexible Error Density."Computational Statistics & Data Analysis 78: 218-34) use the local constant (also known as the Nadaraya-Watson) estimator to estimate the regression function, we extend this to the local linear estimator, which produces more accurate estimation. The proposed investigation is motivated by the lack of data-driven methods for simultaneously choosing bandwidths in the local linear estimator of the regression function and kernel-form error density. Treating bandwidths as parameters, we derive an approximate (pseudo) likelihood and a posterior. A simulation study shows that the proposed bandwidth estimation outperforms the rule-of-thumb and cross-validation methods under the criterion of integrated squared errors. The proposed bandwidth estimation method is validated through a nonparametric regression model involving firm ownership concentration, and a model involving state-price density estimation.
KW - Markov chain Monte Carlo
KW - kernel-form error density
KW - ownership concentration
KW - state-price density
UR - http://www.scopus.com/inward/record.url?scp=85097500108&partnerID=8YFLogxK
U2 - 10.1515/snde-2018-0050
DO - 10.1515/snde-2018-0050
M3 - Article
SN - 1081-1826
VL - 26
SP - 55
EP - 71
JO - Studies in Nonlinear Dynamics and Econometrics
JF - Studies in Nonlinear Dynamics and Econometrics
IS - 1
ER -