Bayesian inference of Earth's radial seismic structure from body-wave traveltimes using neural networks

Ralph W.L. De Wit*, Andrew P. Valentine, Jeannot Trampert

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

38 Citations (Scopus)

Abstract

How do body-wave traveltimes constrain the Earth's radial (1-D) seismic structure? Existing 1-D seismological models underpin 3-D seismic tomography and earthquake location algorithms. It is therefore crucial to assess the quality of such 1-D models, yet quantifying uncertainties in seismological models is challenging and thus often ignored. Ideally, quality assessment should be an integral part of the inverse method. Our aim in this study is twofold: (i) we show how to solve a general Bayesian non-linear inverse problem and quantify model uncertainties, and (ii) we investigate the constraint on spherically symmetric P-wave velocity (VP) structure provided by body-wave traveltimes from the EHB bulletin (phases Pn, P, PP and PKP). Our approach is based on artificial neural networks, which are very common in pattern recognition problems and can be used to approximate an arbitrary function. We use a Mixture Density Network to obtain 1-D marginal posterior probability density functions (pdfs), which provide a quantitative description of our knowledge on the individual Earth parameters. No linearization or model damping is required, which allows us to infer a model which is constrained purely by the data. We present 1-D marginal posterior pdfs for the 22 VP parameters and seven discontinuity depths in our model. P-wave velocities in the inner core, outer core and lower mantle are resolved well, with standard deviations of ~0.2 to 1 per cent with respect to the mean of the posterior pdfs. The maximum likelihoods of VP are in general similar to the corresponding ak135 values, which lie within one or two standard deviations from the posterior means, thus providing an independent validation of ak135 in this part of the radial model. Conversely, the data contain little or no information on P-wave velocity in the D" layer, the upper mantle and the homogeneous crustal layers. Further, the data do not constrain the depth of the discontinuities in our model. Using additional phases available in the ISC bulletin, such as PcP, PKKP and the converted phases SP and ScP, may enhance the resolvability of these parameters. Finally, we show how the method can be extended to obtain a posterior pdf for a multidimensional model space. This enables us to investigate correlations between model parameters.

Original languageEnglish
Pages (from-to)408-422
Number of pages15
JournalGeophysical Journal International
Volume195
Issue number1
DOIs
Publication statusPublished - Oct 2013
Externally publishedYes

Fingerprint

Dive into the research topics of 'Bayesian inference of Earth's radial seismic structure from body-wave traveltimes using neural networks'. Together they form a unique fingerprint.

Cite this