TY - JOUR
T1 - Beyond amphiphiles
T2 - Coarse-grained simulations of star-polyphile liquid crystalline assemblies
AU - Kirkensgaard, Jacob Judas Kain
AU - Hyde, Stephen
PY - 2009
Y1 - 2009
N2 - We have simulated the self-assembly of a novel class of three-arm molecules, ABC star-architecture polyphiles, using coarse-grained bead simulations. A number of topologically complex liquid crystalline mesostructures arise that can be related to the better-known bicontinuous mesophases of lyotropic amphiphilic systems. The simulations reveal 3D self-assemblies whose structural variations follow those expected assuming a simple steric molecular packing model as a function of star polyphile splay and relative volumes of each arm in the polyphile. The splay of each arm, characterised by the 3D wedge-shape emanating from the core of each molecule to its exterior induces torsion of the interfaces along the triple lines, whereas differences in the relative volumes of arms induce curvature of the triple lines. Three distinct mesostructures are described, characterised by their micro-domain topologies, which are unknown in simpler amphiphilic systems, but resemble in some respects bicontinuous mesophases. These three- (or more) arm polyphilic systems offer an interesting extension to the better-known self-assembly of (two-arm) amphiphiles in solution.
AB - We have simulated the self-assembly of a novel class of three-arm molecules, ABC star-architecture polyphiles, using coarse-grained bead simulations. A number of topologically complex liquid crystalline mesostructures arise that can be related to the better-known bicontinuous mesophases of lyotropic amphiphilic systems. The simulations reveal 3D self-assemblies whose structural variations follow those expected assuming a simple steric molecular packing model as a function of star polyphile splay and relative volumes of each arm in the polyphile. The splay of each arm, characterised by the 3D wedge-shape emanating from the core of each molecule to its exterior induces torsion of the interfaces along the triple lines, whereas differences in the relative volumes of arms induce curvature of the triple lines. Three distinct mesostructures are described, characterised by their micro-domain topologies, which are unknown in simpler amphiphilic systems, but resemble in some respects bicontinuous mesophases. These three- (or more) arm polyphilic systems offer an interesting extension to the better-known self-assembly of (two-arm) amphiphiles in solution.
UR - http://www.scopus.com/inward/record.url?scp=62349098957&partnerID=8YFLogxK
U2 - 10.1039/b818032f
DO - 10.1039/b818032f
M3 - Article
SN - 1463-9076
VL - 11
SP - 2016
EP - 2022
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 12
ER -