TY - GEN
T1 - Beyond views
T2 - 12th International AAAI Conference on Web and Social Media, ICWSM 2018
AU - Wu, Siqi
AU - Rizoiu, Marian Andrei
AU - Xie, Lexing
N1 - Publisher Copyright:
Copyright © 2018, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2018
Y1 - 2018
N2 - The share of videos in the internet traffic has been growing, therefore understanding how videos capture attention on a global scale is also of growing importance. Most current research focus on modeling the number of views, but we argue that video engagement, or time spent watching is a more appropriate measure for resource allocation problems in attention, networking, and promotion activities. In this paper, we present a first large-scale measurement of video-level aggregate engagement from publicly available data streams, on a collection of 5.3 million YouTube videos published over two months in 2016. We study a set of metrics including time and the average percentage of a video watched. We define a new metric, relative engagement, that is calibrated against video properties and strongly correlate with recognized notions of quality. Moreover, we find that engagement measures of a video are stable over time, thus separating the concerns for modeling engagement and those for popularity - the latter is known to be unstable over time and driven by external promotions. We also find engagement metrics predictable from a cold-start setup, having most of its variance explained by video context, topics and channel information - R2=0.77. Our observations imply several prospective uses of engagement metrics - choosing engaging topics for video production, or promoting engaging videos in recommender systems.
AB - The share of videos in the internet traffic has been growing, therefore understanding how videos capture attention on a global scale is also of growing importance. Most current research focus on modeling the number of views, but we argue that video engagement, or time spent watching is a more appropriate measure for resource allocation problems in attention, networking, and promotion activities. In this paper, we present a first large-scale measurement of video-level aggregate engagement from publicly available data streams, on a collection of 5.3 million YouTube videos published over two months in 2016. We study a set of metrics including time and the average percentage of a video watched. We define a new metric, relative engagement, that is calibrated against video properties and strongly correlate with recognized notions of quality. Moreover, we find that engagement measures of a video are stable over time, thus separating the concerns for modeling engagement and those for popularity - the latter is known to be unstable over time and driven by external promotions. We also find engagement metrics predictable from a cold-start setup, having most of its variance explained by video context, topics and channel information - R2=0.77. Our observations imply several prospective uses of engagement metrics - choosing engaging topics for video production, or promoting engaging videos in recommender systems.
UR - http://www.scopus.com/inward/record.url?scp=85050581921&partnerID=8YFLogxK
M3 - Conference contribution
T3 - 12th International AAAI Conference on Web and Social Media, ICWSM 2018
SP - 434
EP - 443
BT - 12th International AAAI Conference on Web and Social Media, ICWSM 2018
PB - AAAI Press
Y2 - 25 June 2018 through 28 June 2018
ER -