TY - JOUR
T1 - Black hole masses and eddington ratios at 0.3 < z < 4
AU - Kollmeier, Juna A.
AU - Unken, Christopher A.
AU - Kochanek, Christopher S.
AU - Gould, Andrew
AU - Weinberg, David H.
AU - Dietrich, Matthias
AU - Cool, Richard
AU - Arjun, D. E.Y.
AU - Eisenstein, Daniel J.
AU - Jannuzi, Buell T.
AU - Floc'H, Emeric L.E.
AU - Stern, Daniel
PY - 2006/9/1
Y1 - 2006/9/1
N2 - We study the distribution of Eddington luminosity ratios, L boj/LEdd, of active galactic nuclei (AGNs) discovered in the AGN and Galaxy Evolution Survey (AGES). We combine Hβ, Mg II, and C IV line widths with continuum luminosities to estimate black hole (BH) masses in 407 AGNs, covering the redshift range z ∼ 0.3-4 and the bolometric luminosity range Lbol ∼ 1045-1047 ergs s-1. The sample consists of X-ray or mid-infrared (24 μm) point sources with optical magnitude R ≤ 21.5 mag and optical emission-line spectra characteristic of AGNs. For the range of luminosity and redshift probed by AGES, the distribution of estimated Eddington ratios is well described as log-normal, with a peak at Z-bol/LEdd ≃ 1/4 and a dispersion of 0.3 dex. Since additional sources of scatter are minimal, this dispersion must account for contributions from the scatter between estimated and true BH mass and the scatter between estimated and true bolometric luminosity. Therefore, we conclude that (1) neither of these sources of error can contribute more than ∼0.3 dex rms, and (2) the true Eddington ratios of optically luminous AGNs are even more sharply peaked. Because the mass estimation errors must be smaller than ∼0.3 dex, we can also investigate the distribution of Eddington ratios at fixed BH mass. We show for the first time that the distribution of Eddington ratios at fixed BH mass is peaked, and that the dearth of AGNs at a factor of ∼ 10 below Eddington is real and not an artifact of sample selection. These results provide strong evidence that supermassive BHs gain most of their mass while radiating close to the Eddington limit, and they suggest that the fueling rates in luminous AGNs are ultimately determined by BH self-regulation of the accretion flow rather than galactic-scale dynamical disturbances.
AB - We study the distribution of Eddington luminosity ratios, L boj/LEdd, of active galactic nuclei (AGNs) discovered in the AGN and Galaxy Evolution Survey (AGES). We combine Hβ, Mg II, and C IV line widths with continuum luminosities to estimate black hole (BH) masses in 407 AGNs, covering the redshift range z ∼ 0.3-4 and the bolometric luminosity range Lbol ∼ 1045-1047 ergs s-1. The sample consists of X-ray or mid-infrared (24 μm) point sources with optical magnitude R ≤ 21.5 mag and optical emission-line spectra characteristic of AGNs. For the range of luminosity and redshift probed by AGES, the distribution of estimated Eddington ratios is well described as log-normal, with a peak at Z-bol/LEdd ≃ 1/4 and a dispersion of 0.3 dex. Since additional sources of scatter are minimal, this dispersion must account for contributions from the scatter between estimated and true BH mass and the scatter between estimated and true bolometric luminosity. Therefore, we conclude that (1) neither of these sources of error can contribute more than ∼0.3 dex rms, and (2) the true Eddington ratios of optically luminous AGNs are even more sharply peaked. Because the mass estimation errors must be smaller than ∼0.3 dex, we can also investigate the distribution of Eddington ratios at fixed BH mass. We show for the first time that the distribution of Eddington ratios at fixed BH mass is peaked, and that the dearth of AGNs at a factor of ∼ 10 below Eddington is real and not an artifact of sample selection. These results provide strong evidence that supermassive BHs gain most of their mass while radiating close to the Eddington limit, and they suggest that the fueling rates in luminous AGNs are ultimately determined by BH self-regulation of the accretion flow rather than galactic-scale dynamical disturbances.
KW - Galaxies: active
KW - Galaxies: nuclei
KW - Surveys
UR - http://www.scopus.com/inward/record.url?scp=33748873665&partnerID=8YFLogxK
U2 - 10.1086/505646
DO - 10.1086/505646
M3 - Article
SN - 0004-637X
VL - 648
SP - 128
EP - 139
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1 I
ER -