TY - JOUR
T1 - Boolean gossip networks
AU - Li, Bo
AU - Wu, Junfeng
AU - Qi, Hongsheng
AU - Proutiere, Alexandre
AU - Shi, Guodong
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2018/2
Y1 - 2018/2
N2 - This paper proposes and investigates a Boolean gossip model as a simplified but non-Trivial probabilistic Boolean network. With positive node interactions, in view of standard theories from Markov chains, we prove that the node states asymptotically converge to an agreement at a binary random variable, whose distribution is characterized for large-scale networks by mean-field approximation. Using combinatorial analysis, we also successfully count the number of communication classes of the positive Boolean network explicitly in terms of the topology of the underlying interaction graph, where remarkably minor variation in local structures can drastically change the number of network communication classes. With general Boolean interaction rules, emergence of absorbing network Boolean dynamics is shown to be determined by the network structure with necessary and sufficient conditions established regarding when the Boolean gossip process defines absorbing Markov chains. Particularly, it is shown that for the majority of the Boolean interaction rules, except for nine out of the total 216-1 possible nonempty sets of binary Boolean functions, whether the induced chain is absorbing has nothing to do with the topology of the underlying interaction graph, as long as connectivity is assumed. These results illustrate the possibilities of relating dynamical properties of Boolean networks to graphical properties of the underlying interactions.
AB - This paper proposes and investigates a Boolean gossip model as a simplified but non-Trivial probabilistic Boolean network. With positive node interactions, in view of standard theories from Markov chains, we prove that the node states asymptotically converge to an agreement at a binary random variable, whose distribution is characterized for large-scale networks by mean-field approximation. Using combinatorial analysis, we also successfully count the number of communication classes of the positive Boolean network explicitly in terms of the topology of the underlying interaction graph, where remarkably minor variation in local structures can drastically change the number of network communication classes. With general Boolean interaction rules, emergence of absorbing network Boolean dynamics is shown to be determined by the network structure with necessary and sufficient conditions established regarding when the Boolean gossip process defines absorbing Markov chains. Particularly, it is shown that for the majority of the Boolean interaction rules, except for nine out of the total 216-1 possible nonempty sets of binary Boolean functions, whether the induced chain is absorbing has nothing to do with the topology of the underlying interaction graph, as long as connectivity is assumed. These results illustrate the possibilities of relating dynamical properties of Boolean networks to graphical properties of the underlying interactions.
KW - Boolean networks
KW - Communication classes
KW - Gossiping process
KW - Markov chains
UR - http://www.scopus.com/inward/record.url?scp=85032838465&partnerID=8YFLogxK
U2 - 10.1109/TNET.2017.2763964
DO - 10.1109/TNET.2017.2763964
M3 - Article
SN - 1063-6692
VL - 26
SP - 118
EP - 130
JO - IEEE/ACM Transactions on Networking
JF - IEEE/ACM Transactions on Networking
IS - 1
ER -