Abstract
Meta-optics based on optically resonant dielectric nanostructures is a rapidly developing research field with many potential applications. Halide perovskite metasurfaces have emerged recently as a novel platform for meta-optics, and they offer unique opportunities for control of light in optoelectronic devices. Here, the generalized Kerker conditions are employed to overlap electric and magnetic Mie resonances in each meta-atom of MAPbBr3 perovskite metasurface, and broadband suppression of reflection down to 4% is demonstrated. Furthermore, it is revealed that metasurface nanostructuring is also beneficial for the enhancement of photoluminescence. These results may be useful for applications of nanostructured halide perovskites in photovoltaics and semi-transparent multifunctional metadevices where reflection reduction is important for their high efficiency.
| Original language | English |
|---|---|
| Article number | 2000338 |
| Journal | Laser and Photonics Reviews |
| Volume | 14 |
| Issue number | 12 |
| DOIs | |
| Publication status | Published - Dec 2020 |