Broadband reduction of quantum radiation pressure noise via squeezed light injection

Min Jet Yap*, Jonathan Cripe, Georgia L. Mansell, Terry G. McRae, Robert L. Ward, Bram J.J. Slagmolen, Paula Heu, David Follman, Garrett D. Cole, Thomas Corbitt, David E. McClelland

*Corresponding author for this work

    Research output: Contribution to journalLetterpeer-review

    41 Citations (Scopus)

    Abstract

    The Heisenberg uncertainty principle states that the position of an object cannot be known with infinite precision, as the momentum of the object would then be totally uncertain. This momentum uncertainty then leads to position uncertainty in future measurements. When continuously measuring the position of an object, this quantum effect, known as back-action, limits the achievable precision1,2. In audio-band, interferometer-type gravitational-wave detectors, this back-action effect manifests as quantum radiation pressure noise (QRPN) and will ultimately (but does not yet) limit sensitivity3. Here, we present the use of a quantum engineered state of light to directly manipulate this quantum back-action in a system where it dominates the sensitivity in the 10–50 kHz range. We observe a reduction of 1.2 dB in the quantum back-action noise. This experiment is a crucial step in realizing QRPN reduction for future interferometric gravitational-wave detectors and improving their sensitivity.

    Original languageEnglish
    Pages (from-to)19-23
    Number of pages5
    JournalNature Photonics
    Volume14
    Issue number1
    DOIs
    Publication statusPublished - 1 Jan 2020

    Fingerprint

    Dive into the research topics of 'Broadband reduction of quantum radiation pressure noise via squeezed light injection'. Together they form a unique fingerprint.

    Cite this