Brownian dynamics study of flux ratios in sodium channels

Taira Vora, Ben Corry*, Shin Ho Chung

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    13 Citations (Scopus)

    Abstract

    Measurements of unidirectional fluxes in ion channels provide one of the experimental methods for studying the steps involved in ion permeation in biological pores. Conventionally, the number of ions in the pore is inferred by fitting the ratio of inward and outward currents to an exponential function with an adjustable parameter known as the flux ratio exponent. Here we investigate the relationship between the number of ions in the pore and the flux ratio exponent in a model sodium channel under a range of conditions. Brownian dynamics simulations enable us to count the precise number of ions in the channel and at the same time measure the currents flowing across the pore in both directions. We show here that the values of the flux ratio exponent n′ ranges between 1 and 3 and is highly dependent on the ionic concentrations in which measurements are made. This is a consequence of the fact that both inward and outward currents are susceptible to saturation with increasing concentration. These results indicate that measurements of the flux ratio exponent cannot be directly related to the number of ions in the pore and that interpretation of such experimental measurements requires careful consideration of the conditions in which the study is made.

    Original languageEnglish
    Pages (from-to)45-52
    Number of pages8
    JournalEuropean Biophysics Journal
    Volume38
    Issue number1
    DOIs
    Publication statusPublished - Nov 2008

    Fingerprint

    Dive into the research topics of 'Brownian dynamics study of flux ratios in sodium channels'. Together they form a unique fingerprint.

    Cite this