Abstract
Machine learning has revolutionised speech technologies for major world languages, but these technologies have generally not been available for the roughly 4,000 languages with populations of fewer than 10,000 speakers. This paper describes the development of Elpis, a pipeline which language documentation workers with minimal computational experience can use to build their own speech recognition models, resulting in models being built for 16 languages from the Asia-Pacific region. Elpis puts machine learning speech technologies within reach of people working with languages with scarce data, in a scalable way. This is impactful since it enables language communities to cross the digital divide, and speeds up language documentation. Complete automation of the process is not feasible for languages with small quantities of data and potentially large vocabularies. Hence our goal is not full automation, but rather to make a practical and effective workflow that integrates machine learning technologies.
Original language | English |
---|---|
Pages | 200-204 |
Publication status | Published - 2018 |
Event | The 6th Intl. Workshop on Spoken Language Technologies for Under-Resourced Languages - Gurugram, India Duration: 1 Jan 2018 → … https://www.isca-speech.org/archive/SLTU_2018/ http://www.mica.edu.vn/sltu2018/ |
Conference
Conference | The 6th Intl. Workshop on Spoken Language Technologies for Under-Resourced Languages |
---|---|
Period | 1/01/18 → … |
Other | 29-31 August 2018 |
Internet address |