TY - JOUR
T1 - Bundled turbidite deposition in the central Pandora Trough (Gulf of Papua) since Last Glacial Maximum
T2 - Linking sediment nature and accumulation to sea level fluctuations at millennial timescale
AU - Jorry, Stéphan J.
AU - Droxler, André W.
AU - Mallarino, Gianni
AU - Dickens, Gerald R.
AU - Bentley, Sam J.
AU - Beaufort, Luc
AU - Peterson, Larry C.
AU - Opdyke, Bradley N.
PY - 2008/3/24
Y1 - 2008/3/24
N2 - Since Last Glacial Maximum (23-19 ka), Earth climate warming and deglaciation occurred in two major steps (Bølling-Allerød and Preboreal), interrupted by a short cooling interval referred to as the Younger Dryas (12.5-11.5 ka B.P.). In this study, three cores (MV-33, MV-66, and MD-40) collected in the central part of Pandora Trough (Gulf of Papua) have been analyzed, and they reveal a detailed sedimentary pattern at millennial timescale. Siliciclastic turbidites disappeared during the Bølling-Allerød and Preboreal intervals to systematically reoccur during the Younger Dryas interval. Subsequent to the final disappearance of the siliciclastic turbidites a calciturbidite occurred during meltwater pulse IB. The Holocene interval was characterized by a lack of siliciclastic turbidites, relatively high carbonate content, and fine bank-derived aragonitic sediment. The observed millennial timescale sedimentary variability can be explained by sea level fluctuations. During the Last Glacial Maximum, siliciclastic turbidites were numerous when the lowstand coastal system was located along the modem shelf edge. Although they did not occur during the intervals of maximum flooding of the shelf (during meltwater pulses 1A and 1B), siliciclastic turbidites reappear briefly during the Younger Dryas, an interval when sea level rise slowed, stopped, or perhaps even fell. The timing of the calciturbidite coincides with the first reflooding of Eastern Fields Reef, an atoll that remained exposed for most of the glacial stages.
AB - Since Last Glacial Maximum (23-19 ka), Earth climate warming and deglaciation occurred in two major steps (Bølling-Allerød and Preboreal), interrupted by a short cooling interval referred to as the Younger Dryas (12.5-11.5 ka B.P.). In this study, three cores (MV-33, MV-66, and MD-40) collected in the central part of Pandora Trough (Gulf of Papua) have been analyzed, and they reveal a detailed sedimentary pattern at millennial timescale. Siliciclastic turbidites disappeared during the Bølling-Allerød and Preboreal intervals to systematically reoccur during the Younger Dryas interval. Subsequent to the final disappearance of the siliciclastic turbidites a calciturbidite occurred during meltwater pulse IB. The Holocene interval was characterized by a lack of siliciclastic turbidites, relatively high carbonate content, and fine bank-derived aragonitic sediment. The observed millennial timescale sedimentary variability can be explained by sea level fluctuations. During the Last Glacial Maximum, siliciclastic turbidites were numerous when the lowstand coastal system was located along the modem shelf edge. Although they did not occur during the intervals of maximum flooding of the shelf (during meltwater pulses 1A and 1B), siliciclastic turbidites reappear briefly during the Younger Dryas, an interval when sea level rise slowed, stopped, or perhaps even fell. The timing of the calciturbidite coincides with the first reflooding of Eastern Fields Reef, an atoll that remained exposed for most of the glacial stages.
UR - http://www.scopus.com/inward/record.url?scp=44449103110&partnerID=8YFLogxK
U2 - 10.1029/2006JF000649
DO - 10.1029/2006JF000649
M3 - Article
SN - 2169-9003
VL - 113
JO - Journal of Geophysical Research: Earth Surface
JF - Journal of Geophysical Research: Earth Surface
IS - 1
M1 - F01S19
ER -