TY - GEN
T1 - Can body expressions contribute to automatic depression analysis?
AU - Joshi, Jyoti
AU - Goecke, Roland
AU - Parker, Gordon
AU - Breakspear, Michael
PY - 2013
Y1 - 2013
N2 - Depression is one of the most common mental health disorders with strong adverse effects on personal and social functioning. The absence of any objective diagnostic aid for depression leads to a range of subjective biases in initial diagnosis and ongoing monitoring. Psychologists use various visual cues in their assessment to quantify depression such as facial expressions, eye contact and head movements. This paper studies the contribution of (upper) body expressions and gestures for automatic depression analysis. A framework based on space-time interest points and bag of words is proposed for the analysis of upper body and facial movements. Salient interest points are selected using clustering. The major contribution of this paper lies in the creation of a bag of body expressions and a bag of facial dynamics for assessing the contribution of different body parts for depression analysis. Head movement analysis is performed by selecting rigid facial fiducial points and a new histogram of head movements is proposed. The experiments are performed on real-world clinical data where video clips of patients and healthy controls are recorded during interactive interview sessions. The results show the effectiveness of the proposed system to evaluate the contribution of various body parts in depression analysis.
AB - Depression is one of the most common mental health disorders with strong adverse effects on personal and social functioning. The absence of any objective diagnostic aid for depression leads to a range of subjective biases in initial diagnosis and ongoing monitoring. Psychologists use various visual cues in their assessment to quantify depression such as facial expressions, eye contact and head movements. This paper studies the contribution of (upper) body expressions and gestures for automatic depression analysis. A framework based on space-time interest points and bag of words is proposed for the analysis of upper body and facial movements. Salient interest points are selected using clustering. The major contribution of this paper lies in the creation of a bag of body expressions and a bag of facial dynamics for assessing the contribution of different body parts for depression analysis. Head movement analysis is performed by selecting rigid facial fiducial points and a new histogram of head movements is proposed. The experiments are performed on real-world clinical data where video clips of patients and healthy controls are recorded during interactive interview sessions. The results show the effectiveness of the proposed system to evaluate the contribution of various body parts in depression analysis.
UR - http://www.scopus.com/inward/record.url?scp=84881504892&partnerID=8YFLogxK
U2 - 10.1109/FG.2013.6553796
DO - 10.1109/FG.2013.6553796
M3 - Conference contribution
SN - 9781467355452
T3 - 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, FG 2013
BT - 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, FG 2013
T2 - 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, FG 2013
Y2 - 22 April 2013 through 26 April 2013
ER -