@inproceedings{3c2d0278072047b4ab3feabc83586d88,
title = "Can vacancies and their complexes with nonmetals prevent the lifetime reaching its intrinsic limit in silicon?",
abstract = "Recombination active defects are found in as-grown high-purity Czochralski (Cz) and Floating Zone (FZ) n-type silicon wafers. Due to their low concentrations, the observed defects are unlikely to be identified through Deep-Level Transient Spectroscopy (DLTS) or Electron Paramagnetic Resonance (EPR), hence we use photoluminescence imaging, lifetime spectroscopy, and defect imaging along the ingot to help identify the defect(s). Our experimental findings suggest that vacancy-related complexes incorporated during ingot growth may be responsible for the decreased minority carrier lifetime.",
keywords = "amorphous materials, charge carrier lifetime, photovoltaic cells, silicon",
author = "Rougieux, {Fiacre E.} and Grant, {Nicholas E.} and Daniel Macdonald and Murphy, {John D.}",
note = "Publisher Copyright: {\textcopyright} 2015 IEEE.; 42nd IEEE Photovoltaic Specialist Conference, PVSC 2015 ; Conference date: 14-06-2015 Through 19-06-2015",
year = "2015",
month = dec,
day = "14",
doi = "10.1109/PVSC.2015.7355687",
language = "English",
series = "2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
booktitle = "2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015",
address = "United States",
}