Abstract
Obtaining an accurate measurement of 18O/16O at natural abundance level for land plants-derived α-cellulose with the currently popular EA/Py/IRMS (elemental analysis/pyrolysis/isotope ratio mass spectrometry) method is a challenge due to the hygroscopic nature of the exposed hydroxyl groups, as the 18O/16O of adsorbed moisture is usually different from that of the α-cellulose and the relative amount of adsorbed moisture is sample- and relative humidity-dependent. To minimize the hygroscopicity-related measurement error, we capped the hydroxyl groups of α-cellulose by benzylation to various degrees and found that the 18O/16O ratio of α-cellulose increased with the degree of benzyl substitution (DS), consistent with the theoretical prediction that a reduced presence of exposed hydroxyl groups should lead to a more accurate (and therefore more reliable) α-cellulose 18O/16O measurement. We propose the establishment of a moisture adsorption-degree of substitution or percentage of oxygen-18O/16O ratio equation, based on the measurement of C%, O% and δ18O of variably capped α-cellulose, so that a robust correction can be made in a plant species- and laboratory conditions-specific manner. Failure to do so will lead to an average underestimate of α-cellulose δ18O by 3.5 mUr under “average” laboratory conditions.
Original language | English |
---|---|
Article number | 124698 |
Journal | Talanta |
Volume | 262 |
DOIs | |
Publication status | Published - 1 Sept 2023 |