Carbon and oxygen in metal-poor halo stars

A. M. Amarsi, P. E. Nissen, M. Asplund, K. Lind, P. S. Barklem

    Research output: Contribution to journalArticlepeer-review

    36 Citations (Scopus)

    Abstract

    Carbon and oxygen are key tracers of the Galactic chemical evolution; in particular, a reported upturn in [C/O] towards decreasing [O/H] in metal-poor halo stars could be a signature of nucleosynthesis by massive Population III stars. We reanalyse carbon, oxygen, and iron abundances in 39 metal-poor turn-off stars. For the first time, we take into account 3D hydrodynamic effects together with departures from local thermodynamic equilibrium (LTE) when determining both the stellar parameters and the elemental abundances, by deriving effective temperatures from 3D non-LTE Hβ profiles, surface gravities from Gaia parallaxes, iron abundances from 3D LTE Fe II equivalent widths, and carbon and oxygen abundances from 3D non-LTE C I and I equivalent widths. We find that [C/Fe] stays flat with [Fe/H], whereas [O/Fe] increases linearly up to 0.75 dex with decreasing [Fe/H] down to -3.0 dex. Therefore [C/O] monotonically decreases towards decreasing [C/H], in contrast to previous findings, mainly because the non-LTE effects for I at low [Fe/H] are weaker with our improved calculations.

    Original languageEnglish
    Article numberL4
    JournalAstronomy and Astrophysics
    Volume622
    DOIs
    Publication statusPublished - 1 Feb 2019

    Fingerprint

    Dive into the research topics of 'Carbon and oxygen in metal-poor halo stars'. Together they form a unique fingerprint.

    Cite this