Abstract
The success of immunization with irradiated sporozoites is unparalleled among the current vaccination approaches against malaria, but its mechanistic underpinnings have yet to be fully elucidated. Using a model mimicking natural infection by Plasmodium yoelii, we delineated early events governing the development of protective CD8+ T-cell responses to the circumsporozoite protein. We demonstrate that dendritic cells in cutaneous lymph nodes prime the first cohort of CD8+ T cells after an infectious mosquito bite. Ablation of these lymphoid sites greatly impairs subsequent development of protective immunity. Activated CD8+ T cells then travel to systemic sites, including the liver, in a sphingosine-1-phosphate (S1P)-dependent fashion. These effector cells, however, no longer require bone marrow-derived antigen-presenting cells for protection; instead, they recognize antigen on parenchymal cells-presumably parasitized hepatocytes. Therefore, we report an unexpected dichotomy in the tissue restriction of host responses during the development and execution of protective immunity to Plasmodium.
Original language | English |
---|---|
Pages (from-to) | 1035-1041 |
Number of pages | 7 |
Journal | Nature Medicine |
Volume | 13 |
Issue number | 9 |
DOIs | |
Publication status | Published - Sept 2007 |
Externally published | Yes |