Abstract
We present a quantum multimodal treatment describing electromagnetically induced transparency (EIT) as a mechanism for storing continuous-variable quantum information in light fields. Taking into account the atomic noise and decoherences of realistic experiments, we numerically model the propagation, storage, and readout of signals contained in the sideband amplitude and phase quadratures of a light pulse using phase space methods. An analytical treatment of the effects predicted by this model is then presented. Finally, we use quantum information benchmarks to examine the properties of the EIT-based memory and show the parameters needed to operate beyond the quantum limit.
Original language | English |
---|---|
Article number | 012323 |
Journal | Physical Review A - Atomic, Molecular, and Optical Physics |
Volume | 77 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2008 |