TY - JOUR
T1 - Characterization of ion track-etched conical nanopores in thermal and PECVD SiO2 using small angle X-ray scattering
AU - Dutt, Shankar
AU - Chakraborty, Rudradeep
AU - Notthoff, Christian
AU - Mota-Santiago, Pablo
AU - Trautmann, Christina
AU - Kluth, Patrick
N1 - © 2025 Dutt et al.
PY - 2025/6/12
Y1 - 2025/6/12
N2 - Conical nanopores in amorphous SiO2 thin films fabricated using the ion track etching technique show promising potential for filtration, sensing, and nanofluidic applications. The characterization of the pore morphology and size distribution, along with its dependence on the material properties and fabrication parameters, is crucial to designing nanopore systems for specific applications. Here, we present a comprehensive study of track-etched nanopores in thermal and plasma-enhanced chemical vapor-deposited (PECVD) SiO2 using synchrotron-based small-angle X-ray scattering (SAXS). The nanopores were fabricated by irradiating the samples with 89 MeV, 185 MeV, and 1.6 GeV Au ions, followed by hydrofluoric acid etching. We present a new approach for analyzing the complex highly anisotropic two-dimensional SAXS patterns of the pores by reducing the analysis to two orthogonal one-dimensional slices of the data. The simultaneous fit of the data enables an accurate determination of the pore geometry and size distribution. The analysis reveals substantial differences between the nanopores in thermal and PECVD SiO2. The track-to-bulk etching rate ratio is significantly different for the two materials, producing nanopores with cone angles that differ by almost a factor of two. Furthermore, thermal SiO2 exhibits an exceptionally narrow size distribution of only 2-4%, while PECVD SiO2 shows a higher variation ranging from 8% to 18%. The impact of different ion energies on the size of the nanopores was also investigated for pores in PECVD SiO2 and shows only negligible influence. These findings provide crucial insights for the controlled fabrication of conical nanopores in different materials, which is essential for optimizing membrane performance in applications that require precise pore geometry
AB - Conical nanopores in amorphous SiO2 thin films fabricated using the ion track etching technique show promising potential for filtration, sensing, and nanofluidic applications. The characterization of the pore morphology and size distribution, along with its dependence on the material properties and fabrication parameters, is crucial to designing nanopore systems for specific applications. Here, we present a comprehensive study of track-etched nanopores in thermal and plasma-enhanced chemical vapor-deposited (PECVD) SiO2 using synchrotron-based small-angle X-ray scattering (SAXS). The nanopores were fabricated by irradiating the samples with 89 MeV, 185 MeV, and 1.6 GeV Au ions, followed by hydrofluoric acid etching. We present a new approach for analyzing the complex highly anisotropic two-dimensional SAXS patterns of the pores by reducing the analysis to two orthogonal one-dimensional slices of the data. The simultaneous fit of the data enables an accurate determination of the pore geometry and size distribution. The analysis reveals substantial differences between the nanopores in thermal and PECVD SiO2. The track-to-bulk etching rate ratio is significantly different for the two materials, producing nanopores with cone angles that differ by almost a factor of two. Furthermore, thermal SiO2 exhibits an exceptionally narrow size distribution of only 2-4%, while PECVD SiO2 shows a higher variation ranging from 8% to 18%. The impact of different ion energies on the size of the nanopores was also investigated for pores in PECVD SiO2 and shows only negligible influence. These findings provide crucial insights for the controlled fabrication of conical nanopores in different materials, which is essential for optimizing membrane performance in applications that require precise pore geometry
KW - Nuclear tracks
KW - Membranes
KW - Ultrathin
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=anu_research_portal_plus2&SrcAuth=WosAPI&KeyUT=WOS:001533391100001&DestLinkType=FullRecord&DestApp=WOS_CPL
U2 - 10.48550/arXiv.2502.14118
DO - 10.48550/arXiv.2502.14118
M3 - Article
C2 - 40589922
SN - 2190-4286
VL - 16
SP - 899
EP - 909
JO - Beilstein Journal of Nanotechnology
JF - Beilstein Journal of Nanotechnology
ER -