Abstract
The mechanism of the mouse (m)B0AT1 (slc6a19) transporter was studied in detail using two electrode voltage-clamp techniques and tracer studies in the Xenopus oocyte expression system. All neutral amino acids induced inward currents at physiological potentials, but large neutral non-aromatic amino acids were the preferred substrates of mB0AT1. Substrates were transported with K0.5 values ranging from approx. 1 mM to approx. 10 mM. The transporter mediates Na+-amino acid co-transport with a stoichiometry of 1:1. No other ions were involved in the transport mechanism. An increase in the extracellular Na+ concentration reduced the K 0.5 for leucine, and vice versa. Moreover, the K0.5 values and Vmax values of both substrates varied with the membrane potential. As a result, K0.5 and Vmax values are a complex function of the concentration of substrate and co-substrate and the membrane potential. A model is presented assuming random binding order and a positive charge associated with the ternary [Na+-substrate-transporter] complex, which is consistent with the experimental data.
Original language | English |
---|---|
Pages (from-to) | 745-751 |
Number of pages | 7 |
Journal | Biochemical Journal |
Volume | 389 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Aug 2005 |