CHD4 slides nucleosomes by decoupling entry- and exit-side DNA translocation

Yichen Zhong, Bishnu P. Paudel, Daniel P. Ryan, Jason K.K. Low, Charlotte Franck, Karishma Patel, Max J. Bedward, Mario Torrado, Richard J. Payne, Antoine M. van Oijen, Joel P. Mackay*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    23 Citations (Scopus)

    Abstract

    Chromatin remodellers hydrolyse ATP to move nucleosomal DNA against histone octamers. The mechanism, however, is only partially resolved, and it is unclear if it is conserved among the four remodeller families. Here we use single-molecule assays to examine the mechanism of action of CHD4, which is part of the least well understood family. We demonstrate that the binding energy for CHD4-nucleosome complex formation—even in the absence of nucleotide—triggers significant conformational changes in DNA at the entry side, effectively priming the system for remodelling. During remodelling, flanking DNA enters the nucleosome in a continuous, gradual manner but exits in concerted 4–6 base-pair steps. This decoupling of entry- and exit-side translocation suggests that ATP-driven movement of entry-side DNA builds up strain inside the nucleosome that is subsequently released at the exit side by DNA expulsion. Based on our work and previous studies, we propose a mechanism for nucleosome sliding.

    Original languageEnglish
    Article number1519
    JournalNature Communications
    Volume11
    Issue number1
    DOIs
    Publication statusPublished - 1 Dec 2020

    Fingerprint

    Dive into the research topics of 'CHD4 slides nucleosomes by decoupling entry- and exit-side DNA translocation'. Together they form a unique fingerprint.

    Cite this