Abstract
The emergence and spread of chloroquine-resistant Plasmodium falciparum malaria parasites has been a disaster for world health. Resistance is conferred by mutations in the Chloroquine Resistance Transporter (PfCRT), an integral membrane protein localized to the parasite's internal digestive vacuole. These mutations result in a marked reduction in the accumulation of chloroquine (CO) by the parasite. However, the mechanism by which this occurs is unclear. We expressed both wild-type and resistant forms of PfCRT at the surface of Xenopus laevis oocytes. The resistant form of PfCRT transported CQ, whereas the wild-type protein did not. CQ transport via the mutant PfCRT was inhibited by CQ analogs and by the resistance-reverser verapamil. Thus, CQ resistance is due to direct transport of the drug via mutant PfCRT.
Original language | English |
---|---|
Pages (from-to) | 1680-1682 |
Number of pages | 3 |
Journal | Science |
Volume | 325 |
Issue number | 5948 |
DOIs | |
Publication status | Published - 2009 |