TY - JOUR
T1 - Circularly polarized luminescence spectroscopy reveals low-energy excited states and dynamic localization of vibronic transitions in CP43
AU - Hall, Jeremy
AU - Renger, Thomas
AU - Picorel, Rafael
AU - Krausz, Elmars
N1 - Publisher Copyright:
© 2015 Elsevier B.V. All rights reserved.
PY - 2016/1/1
Y1 - 2016/1/1
N2 - Circularly polarized luminescence (CPL) spectroscopy is an established but relatively little-used technique that monitors the chirality of an emission. When applied to photosynthetic pigment assemblies, we find that CPL provides sensitive and detailed information on low-energy exciton states, reflecting the interactions, site energies and geometries of interacting pigments. CPL is the emission analog of circular dichroism (CD) and thus spectra explore the optical activity only of fluorescent states of the pigment-protein complex and consequently the nature of the lowest-energy excited states (trap states), whose study is a critical area of photosynthesis research. In this work, we develop the new approach of temperature-dependent CPL spectroscopy, over the 2-120 K temperature range, and apply it to the CP43 proximal antenna protein of photosystem II. Our results confirm strong excitonic interactions for at least one of the two well-established emitting states of CP43 named "A" and "B". Previous structure-based models of CP43 spectra are evaluated in the light of the new CPL data. Our analysis supports the assignments of Shibata et al. [Shibata et al. J. Am. Chem. Soc. 135 (2013) 6903-6914], particularly for the highly-delocalized B-state. This state dominates CPL spectra and is attributed predominantly to chlorophyll a's labeled Chl 634 and Chl 636 (alternatively labeled Chl 43 and 45 by Shibata et al.). The absence of any CPL intensity in intramolecular vibrational sidebands associated with the delocalized "B" excited state is attributed to the dynamic localization of intramolecular vibronic transitions.
AB - Circularly polarized luminescence (CPL) spectroscopy is an established but relatively little-used technique that monitors the chirality of an emission. When applied to photosynthetic pigment assemblies, we find that CPL provides sensitive and detailed information on low-energy exciton states, reflecting the interactions, site energies and geometries of interacting pigments. CPL is the emission analog of circular dichroism (CD) and thus spectra explore the optical activity only of fluorescent states of the pigment-protein complex and consequently the nature of the lowest-energy excited states (trap states), whose study is a critical area of photosynthesis research. In this work, we develop the new approach of temperature-dependent CPL spectroscopy, over the 2-120 K temperature range, and apply it to the CP43 proximal antenna protein of photosystem II. Our results confirm strong excitonic interactions for at least one of the two well-established emitting states of CP43 named "A" and "B". Previous structure-based models of CP43 spectra are evaluated in the light of the new CPL data. Our analysis supports the assignments of Shibata et al. [Shibata et al. J. Am. Chem. Soc. 135 (2013) 6903-6914], particularly for the highly-delocalized B-state. This state dominates CPL spectra and is attributed predominantly to chlorophyll a's labeled Chl 634 and Chl 636 (alternatively labeled Chl 43 and 45 by Shibata et al.). The absence of any CPL intensity in intramolecular vibrational sidebands associated with the delocalized "B" excited state is attributed to the dynamic localization of intramolecular vibronic transitions.
KW - Circular dichroism
KW - Circularly polarized luminescence
KW - Dynamic localization
KW - Fluorescence
KW - Lowest excited states
KW - Photosystem II
UR - http://www.scopus.com/inward/record.url?scp=84947081163&partnerID=8YFLogxK
U2 - 10.1016/j.bbabio.2015.09.012
DO - 10.1016/j.bbabio.2015.09.012
M3 - Article
SN - 0005-2728
VL - 1857
SP - 115
EP - 128
JO - Biochimica et Biophysica Acta - Bioenergetics
JF - Biochimica et Biophysica Acta - Bioenergetics
IS - 1
ER -