TY - JOUR
T1 - Climate change induced declines in fuel moisture may turn currently fire-free Pyrenean mountain forests into fire-prone ecosystems
AU - Resco de Dios, Víctor
AU - Hedo, Javier
AU - Cunill Camprubí, Àngel
AU - Thapa, Prakash
AU - Martínez del Castillo, Edurne
AU - Martínez de Aragón, Juan
AU - Bonet, José Antonio
AU - Balaguer-Romano, Rodrigo
AU - Díaz-Sierra, Rubén
AU - Yebra, Marta
AU - Boer, Matthias M.
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/11/25
Y1 - 2021/11/25
N2 - Fuel moisture limits the availability of fuel to wildfires in many forest areas worldwide, but the effects of climate change on moisture constraints remain largely unknown. Here we addressed how climate affects fuel moisture in pine stands from Catalonia, NE Spain, and the potential effects of increasing climate aridity on burned area in the Pyrenees, a mesic mountainous area where fire is currently rare. We first quantified variation in fuel moisture in six sites distributed across an altitudinal gradient where the long-term mean annual temperature and precipitation vary by 6–15 °C and 395–933 mm, respectively. We observed significant spatial variation in live (78–162%) and dead (10–15%) fuel moisture across sites. The pattern of variation was negatively linked (r = |0.6|–|0.9|) to increases in vapor pressure deficit (VPD) and in the Aridity Index. Using seasonal fire records over 2006–2020, we observed that summer burned area in the Mediterranean forests of Northeast Spain and Southern France was strongly dependent on VPD (r = 0.93), the major driver (and predictor) of dead fuel moisture content (DFMC) at our sites. Based on the difference between VPD thresholds associated with large wildfire seasons in the Mediterranean (3.6 kPa) and the maximum VPD observed in surrounding Pyrenean mountains (3.1 kPa), we quantified the “safety margin” for Pyrenean forests (difference between actual VPD and that associated with large wildfires) at 0.5 kPa. The effects of live fuel moisture content (LFMC) on burned area were not significant under current conditions, a situation that may change with projected increases in climate aridity. Overall, our results indicate that DFMC in currently fire-free areas in Europe, like the Pyrenees, with vast amounts of fuel in many forest stands, may reach critical dryness thresholds beyond the safety margin and experience large wildfires after only mild increases in VPD, although LFMC can modulate the response.
AB - Fuel moisture limits the availability of fuel to wildfires in many forest areas worldwide, but the effects of climate change on moisture constraints remain largely unknown. Here we addressed how climate affects fuel moisture in pine stands from Catalonia, NE Spain, and the potential effects of increasing climate aridity on burned area in the Pyrenees, a mesic mountainous area where fire is currently rare. We first quantified variation in fuel moisture in six sites distributed across an altitudinal gradient where the long-term mean annual temperature and precipitation vary by 6–15 °C and 395–933 mm, respectively. We observed significant spatial variation in live (78–162%) and dead (10–15%) fuel moisture across sites. The pattern of variation was negatively linked (r = |0.6|–|0.9|) to increases in vapor pressure deficit (VPD) and in the Aridity Index. Using seasonal fire records over 2006–2020, we observed that summer burned area in the Mediterranean forests of Northeast Spain and Southern France was strongly dependent on VPD (r = 0.93), the major driver (and predictor) of dead fuel moisture content (DFMC) at our sites. Based on the difference between VPD thresholds associated with large wildfire seasons in the Mediterranean (3.6 kPa) and the maximum VPD observed in surrounding Pyrenean mountains (3.1 kPa), we quantified the “safety margin” for Pyrenean forests (difference between actual VPD and that associated with large wildfires) at 0.5 kPa. The effects of live fuel moisture content (LFMC) on burned area were not significant under current conditions, a situation that may change with projected increases in climate aridity. Overall, our results indicate that DFMC in currently fire-free areas in Europe, like the Pyrenees, with vast amounts of fuel in many forest stands, may reach critical dryness thresholds beyond the safety margin and experience large wildfires after only mild increases in VPD, although LFMC can modulate the response.
KW - Altitudinal gradient
KW - Forest fire
KW - Fuel moisture
KW - Novel fire regimes
KW - Vapor pressure deficit
UR - http://www.scopus.com/inward/record.url?scp=85110675635&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2021.149104
DO - 10.1016/j.scitotenv.2021.149104
M3 - Article
SN - 0048-9697
VL - 797
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 149104
ER -