TY - JOUR
T1 - Climate variability and salmonellosis in Singapore – A time series analysis
AU - Aik, Joel
AU - Heywood, Anita E.
AU - Newall, Anthony T.
AU - Ng, Lee Ching
AU - Kirk, Martyn D.
AU - Turner, Robin
N1 - Publisher Copyright:
© 2018 The Authors
PY - 2018/10/15
Y1 - 2018/10/15
N2 - Climate change is expected to bring about global warming and an increase in the frequency of extreme weather events. This may consequently influence the transmission of food-borne diseases. The short term associations between climatic conditions and Salmonella infections are well documented in temperate climates but not in the tropics. We conducted an ecological time series analysis to estimate the short term associations between non-outbreak, non-travel associated reports of Salmonella infections and observed climatic conditions from 2005 to 2015 for Singapore. We used a negative binomial time series regression model to analyse the associations on a weekly scale, controlling for season, long term trend, delayed weather effects, autocorrelation and the period where Salmonella was made legally notifiable. There were a total of 11,324 Salmonella infections reported during our study period. A 1 °C increase in mean ambient air temperature was associated with a 4.3% increase (Incidence Rate Ratio [IRR]: 1.043, 95% confidence interval [CI] = 1.003, 1.084) in reported Salmonella infections in the same week and a 6.3% increase (IRR: 1.063, 95% CI = 1.022, 1.105) three weeks later. A 1% increase in the mean relative humidity was associated with a 1.3% decrease (IRR: 0.987, 95% CI = 0.981, 0.994) in cases six weeks later, while a 10 mm increase in weekly cumulative rainfall was associated with a 0.8% increase (IRR: 1.008, 95% CI = 1.002, 1.015) in cases 2 weeks later but a 0.9% decrease (IRR: 0.991, 95% CI = 0.984, 0.998) in cases 5 weeks later. No thresholds for these weather effects were detected. This study confirms the short-term influence of climatic conditions on Salmonella infections in Singapore and the potential impact of climate change on Salmonellosis in the tropics.
AB - Climate change is expected to bring about global warming and an increase in the frequency of extreme weather events. This may consequently influence the transmission of food-borne diseases. The short term associations between climatic conditions and Salmonella infections are well documented in temperate climates but not in the tropics. We conducted an ecological time series analysis to estimate the short term associations between non-outbreak, non-travel associated reports of Salmonella infections and observed climatic conditions from 2005 to 2015 for Singapore. We used a negative binomial time series regression model to analyse the associations on a weekly scale, controlling for season, long term trend, delayed weather effects, autocorrelation and the period where Salmonella was made legally notifiable. There were a total of 11,324 Salmonella infections reported during our study period. A 1 °C increase in mean ambient air temperature was associated with a 4.3% increase (Incidence Rate Ratio [IRR]: 1.043, 95% confidence interval [CI] = 1.003, 1.084) in reported Salmonella infections in the same week and a 6.3% increase (IRR: 1.063, 95% CI = 1.022, 1.105) three weeks later. A 1% increase in the mean relative humidity was associated with a 1.3% decrease (IRR: 0.987, 95% CI = 0.981, 0.994) in cases six weeks later, while a 10 mm increase in weekly cumulative rainfall was associated with a 0.8% increase (IRR: 1.008, 95% CI = 1.002, 1.015) in cases 2 weeks later but a 0.9% decrease (IRR: 0.991, 95% CI = 0.984, 0.998) in cases 5 weeks later. No thresholds for these weather effects were detected. This study confirms the short-term influence of climatic conditions on Salmonella infections in Singapore and the potential impact of climate change on Salmonellosis in the tropics.
KW - Climate
KW - Salmonella
KW - Salmonellosis
KW - Singapore
KW - Time series
KW - Weather
UR - http://www.scopus.com/inward/record.url?scp=85047395950&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2018.05.254
DO - 10.1016/j.scitotenv.2018.05.254
M3 - Article
SN - 0048-9697
VL - 639
SP - 1261
EP - 1267
JO - Science of the Total Environment
JF - Science of the Total Environment
ER -