Abstract
One of the most successful descriptions of the structure of atomic nuclei is the spherical shell model. It, however, becomes impractical when moving away from closed-shell nuclei. Instead, it is the interplay between the macroscopic shape degrees of freedom and the microscopic nature of the underlying single-particle structure in a deformed basis that determines the nuclear structure. Being the heaviest nucleus precisely in the middle of, known, closed proton and neutron shells, 170Dy has become a central calibration point for tests of collective models of nuclear physics. However, besides one candidate transition from a previous experiment in Legnaro, Italy, no experimental information is available for this nucleus. Using the EURICA setup at RIKEN, which couples the worlds highest intensity in-flight fission facility with a high-efficiency HPGe array, an experiment in November 2014 produced 170Dy nuclei by in-flight fission of a 238U beam. The results from this experiment provide a wealth of information on this elusive nucleus, including the evolution of quadrupole collectivity, rigidity and higher order deformations, as well as the long sought for isomeric K = 6+ state, predicted to be exceptionally pure at mid-shell. These results provide us with a rich level scheme for discussing both single-particle and collective structures at mid-shell.
Original language | English |
---|---|
Article number | 072 |
Journal | Proceedings of Science |
Volume | 2016-September |
Publication status | Published - 2016 |
Event | 26th International Nuclear Physics Conference, INPC 2016 - Adelaide, Australia Duration: 11 Sept 2016 → 16 Sept 2016 |