Combinatory Cancer Therapeutics with Nanoceria-Capped Mesoporous Silica Nanocarriers through pH-triggered Drug Release and Redox Activity

Rajendra K. Singh*, Kapil D. Patel, Chinmaya Mahapatra, S. Prakash Parthiban, Tae Hyun Kim, Hae Won Kim

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

54 Citations (Scopus)

Abstract

In the field of nanomedicine, drug-loaded nanocarriers that integrate nanotechnology and chemotherapeutics are widely used to achieve synergistic therapeutic effects. Here, we prepared mesoporous silica nanoparticles capped with cerium oxide nanoparticles (COP@MSN) wherein a pH trigger-responsive mechanism was used to control drug release and intracellular drug delivery. We blocked the mesopores of the carboxyl-functionalized MSN with aminated COP. These pores could be opened in acidic conditions to release the loaded drug, thus establishing a pH-responsive drug release system. We loaded doxorubicin (DOX) as anticancer biomolecule into the pores of MSN and capped with COP. The COP@DOX-MSN system showed a typical drug release profile in an acidic medium, which, however, was not observed in a neutral medium. In vitro studies using cancer cell line (HeLa) proved that the COP@DOX-MSN entered efficiently into HeLa cells and released DOX to the level sufficient for cytotoxicity. The cytotoxic effect of COP in cancer cells was facilitated by the pro-oxidant property of COPs, which considerably raised the reactive oxygen species (ROS) level, thereby leading to cellular apoptosis. The combination of DOX with COP (COP@DOX-MSN) showed even higher ROS level, demonstrating a cytotoxic synergism of drug and nanoparticle in terms of ROS generation. Collectively, the COP@DOX-MSN is considered useful for cancer treatment with the combined capacity of pH-controlled drug delivery, chemotherapeutics, and redox activity.

Original languageEnglish
Pages (from-to)288-299
Number of pages12
JournalACS Applied Materials and Interfaces
Volume11
Issue number1
DOIs
Publication statusPublished - 9 Jan 2019
Externally publishedYes

Fingerprint

Dive into the research topics of 'Combinatory Cancer Therapeutics with Nanoceria-Capped Mesoporous Silica Nanocarriers through pH-triggered Drug Release and Redox Activity'. Together they form a unique fingerprint.

Cite this