Comparative metabolism of dietary terpene, p-cymene, in generalist and specialist folivorous marsupials

Rebecca Boyle, Stuart McLean*, William J. Foley, Noel W. Davies

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    74 Citations (Scopus)

    Abstract

    The urinary metabolites of the monoterpene, p-cymene, were studied in three marsupial species: a generalist herbivore, the brushtail possum (Trichosurus vulpecula), and two specialist folivores, the greater glider (Petauroides volans) and the ringtail possum (Pseudocheirus peregrinus), as well as in the laboratory rat (Rattus norvegicus). Each animal was dosed, intragastrically, with single doses of p-cymene (0.37 mmol/kg and/or 1.49 mmol/kg). Urine and feces were collected for two 24-hr periods. Quantitative analysis of urinary metabolites by extraction, gas chromatography, and mass spectrometry gave a mean recovery of 64% (range 52-74%) of the administered dose in 48 hr for the four species. No fecal metabolites were found. A species-specific pattern of metabolite excretion was evident and reflected the natural occurrence of p-cymene (and terpenes in general) in the diet. If the metabolites excreted are grouped according to the total number of oxygen atoms added (one to four), then the rat excreted metabolites encompassing all degrees of oxidation, but predominantly a monooxygenated metabolite. The brushtail possum excreted metabolites having two, three, and four oxygen atoms added. The ringtail possum and greater glider only excreted metabolites with three or four oxygen atoms. Conjugation played a significant role in the excretion of oxidized metabolites in only the brushtail possums and the rat. These findings indicate that species encountering terpenes, such as p-cymene, in their normal diet have developed efficient oxidation pathways to eliminate them. This oxidative efficiency could also reduce the necessity for subsequent conjugation of metabolites which minimizes further demands on a nutritionally limited diet.

    Original languageEnglish
    Pages (from-to)2109-2126
    Number of pages18
    JournalJournal of Chemical Ecology
    Volume25
    Issue number9
    DOIs
    Publication statusPublished - 1999

    Fingerprint

    Dive into the research topics of 'Comparative metabolism of dietary terpene, p-cymene, in generalist and specialist folivorous marsupials'. Together they form a unique fingerprint.

    Cite this