TY - JOUR
T1 - Comparing the Locations of Supernovae to CO (2-1) Emission in Their Host Galaxies
AU - Mayker Chen, Ness
AU - Leroy, Adam K.
AU - Lopez, Laura A.
AU - Benincasa, Samantha
AU - Chevance, Mélanie
AU - Glover, Simon C.O.
AU - Hughes, Annie
AU - Kreckel, Kathryn
AU - Sarbadhicary, Sumit
AU - Sun, Jiayi
AU - Thompson, Todd A.
AU - Utomo, Dyas
AU - Bigiel, Frank
AU - Blanc, Guillermo A.
AU - Dale, Daniel A.
AU - Grasha, Kathryn
AU - Kruijssen, J. M.Diederik
AU - Pan, Hsi An
AU - Querejeta, Miguel
AU - Schinnerer, Eva
AU - Watkins, Elizabeth J.
AU - Williams, Thomas G.
N1 - Publisher Copyright:
© 2023. The Author(s). Published by the American Astronomical Society.
PY - 2023/2/1
Y1 - 2023/2/1
N2 - We measure the molecular gas environment near recent (<100 yr old) supernovae (SNe) using ∼1″ or ≤150 pc resolution CO (2-1) maps from the PHANGS-Atacama Large Millimeter/submillimeter Array (ALMA) survey of nearby star-forming galaxies. This is arguably the first such study to approach the scales of individual massive molecular clouds (M mol ≳ 105.3 M ⊙). Using the Open Supernova Catalog, we identify 63 SNe within the PHANGS-ALMA footprint. We detect CO (2-1) emission near ∼60% of the sample at 150 pc resolution, compared to ∼35% of map pixels with CO (2-1) emission, and up to ∼95% of the SNe at 1 kpc resolution, compared to ∼80% of map pixels with CO (2-1) emission. We expect the ∼60% of SNe within the same 150 pc beam, as a giant molecular cloud will likely interact with these clouds in the future, consistent with the observation of widespread SN-molecular gas interaction in the Milky Way, while the other ∼40% of SNe without strong CO (2-1) detections will deposit their energy in the diffuse interstellar medium, perhaps helping drive large-scale turbulence or galactic outflows. Broken down by type, we detect CO (2-1) emission at the sites of ∼85% of our 9 stripped-envelope SNe (SESNe), ∼40% of our 34 Type II SNe, and ∼35% of our 13 Type Ia SNe, indicating that SESNe are most closely associated with the brightest CO (2-1) emitting regions in our sample. Our results confirm that SN explosions are not restricted to only the densest gas, and instead exert feedback across a wide range of molecular gas densities.
AB - We measure the molecular gas environment near recent (<100 yr old) supernovae (SNe) using ∼1″ or ≤150 pc resolution CO (2-1) maps from the PHANGS-Atacama Large Millimeter/submillimeter Array (ALMA) survey of nearby star-forming galaxies. This is arguably the first such study to approach the scales of individual massive molecular clouds (M mol ≳ 105.3 M ⊙). Using the Open Supernova Catalog, we identify 63 SNe within the PHANGS-ALMA footprint. We detect CO (2-1) emission near ∼60% of the sample at 150 pc resolution, compared to ∼35% of map pixels with CO (2-1) emission, and up to ∼95% of the SNe at 1 kpc resolution, compared to ∼80% of map pixels with CO (2-1) emission. We expect the ∼60% of SNe within the same 150 pc beam, as a giant molecular cloud will likely interact with these clouds in the future, consistent with the observation of widespread SN-molecular gas interaction in the Milky Way, while the other ∼40% of SNe without strong CO (2-1) detections will deposit their energy in the diffuse interstellar medium, perhaps helping drive large-scale turbulence or galactic outflows. Broken down by type, we detect CO (2-1) emission at the sites of ∼85% of our 9 stripped-envelope SNe (SESNe), ∼40% of our 34 Type II SNe, and ∼35% of our 13 Type Ia SNe, indicating that SESNe are most closely associated with the brightest CO (2-1) emitting regions in our sample. Our results confirm that SN explosions are not restricted to only the densest gas, and instead exert feedback across a wide range of molecular gas densities.
UR - http://www.scopus.com/inward/record.url?scp=85148417349&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/acab00
DO - 10.3847/1538-4357/acab00
M3 - Article
SN - 0004-637X
VL - 944
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 110
ER -