Abstract
High spatial resolution measurements of Mg, P, U, Sr, Ba and Na using 193-nm excimer laser-ablation inductively coupled plasma mass spectrometry has revealed clearly resolvable annual cycles in a modern speleothem from southwestern Australia. The age of this stalagmite is established by the dates of emplacement and removal of the boardwalk where it grew (1911-1992). This chronological constraint allows for the first confident comparison between the instrumental climate record and speleothem trace element content. Eleven laser-ablation transects across a ∼0.5 mm wide section of the speleothem growth axis were measured. Cycles that could be matched between adjacent transects were stacked into a master record to minimise variability between tracks and permit greater confidence in comparing the trace elements to the instrumental climate record. P and U positively, and Mg inversely, mimic the sudden 20% decrease in annual rainfall experienced by this region since 1965. We argue that P from seasonal vegetation decay is transported to the speleothem before it is mineralised in the soil, owing to the low P retention capacity of southwest Australian soils. Both vegetation activity and the transport of vegetation-derived HPO42- are sensitive to rainfall. Groundwater P concentration may also influence the transport of U through the strong affinity between phosphate and uranyl ions. Mg appears to be sensitive to groundwater residence time as this affects drip-water Mg/Ca composition by preferential loss of Ca during drier episodes when calcite precipitates before reaching the stalagmite. The effects of groundwater residence time may also be important for Sr on inter-annual scales. However, the behaviour of Sr on the annual cycle is opposite to Mg but compatible with Ba and Na, which are shown to depend on speleothem growth rate.
| Original language | English |
|---|---|
| Pages (from-to) | 141-153 |
| Number of pages | 13 |
| Journal | Earth and Planetary Science Letters |
| Volume | 216 |
| Issue number | 1-2 |
| DOIs | |
| Publication status | Published - 15 Nov 2003 |