Computation of linear elastic properties from microtomographic images: Methodology and agreement between theory and experiment

Christoph H. Arns*, Mark A. Knackstedt, W. Val Pinczewski, Edward J. Garboczi

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    396 Citations (Scopus)

    Abstract

    Elastic property-porosity relationships are derived directly from microtomographic images. This is illustrated for a suite of four samples of Fontainebleau sandstone with porosities ranging from 7.5% to 22%. A finite-element method is used to derive the elastic properties of digitized images. By estimating and minimizing several sources of numerical error, very accurate predictions of properties are derived in excellent agreement with experimental measurements over a wide range of the porosity. We consider the elastic properties of the digitized images under dry, water-saturated, and oil-saturated conditions. The observed change in the elastic properties due to fluid substitution is in excellent agreement with the exact Gassmann's equations. This shows both the accuracy and the feasibility of combining microtomographic images with elastic calculations to accurately predict petrophysical properties of individual rock morphologies. We compare the numerical predictions to various empirical, effective medium and rigorous approximations used to relate the elastic properties of rocks to porosity under different saturation conditions.

    Original languageEnglish
    Pages (from-to)1396-1405
    Number of pages10
    JournalGeophysics
    Volume67
    Issue number5
    DOIs
    Publication statusPublished - 2002

    Fingerprint

    Dive into the research topics of 'Computation of linear elastic properties from microtomographic images: Methodology and agreement between theory and experiment'. Together they form a unique fingerprint.

    Cite this