Conduction of Na+ and K+ through the NaK channel: Molecular and brownian dynamics studies

Taira Vora, David Bisset, Shin Ho Chung*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    15 Citations (Scopus)

    Abstract

    Conduction of ions through the NaK channel, with M0 helix removed, was studied using both Brownian dynamics and molecular dynamics. Brownian dynamics simulations predict that the truncated NaK has approximately a third of the conductance of the related KcsA K+ channel, is outwardly rectifying, and has a Michaelis-Menten current-concentration relationship. Current magnitude increases when the glutamine residue located near the intracellular gate is replaced with a glutamate residue. The channel is blocked by extracellular Ca2+. Molecular dynamics simulations show that, under the influence of a strong applied potential, both Na+ and K+ move across the selectivity filter, although conduction rates for Na+ ions are somewhat lower. The mechanism of conduction of Na+ differs significantly from that of K+ in that Na+ is preferentially coordinated by single planes of pore-lining carbonyl oxygens, instead of two planes as in the usual K+ binding sites. The water-containing filter pocket resulting from a single change in the selectivity filter sequence (compared to potassium channels) disrupts several of the planes of carbonyl oxygens, and thus reduces the filter's ability to discriminate against sodium.

    Original languageEnglish
    Pages (from-to)1600-1611
    Number of pages12
    JournalBiophysical Journal
    Volume95
    Issue number4
    DOIs
    Publication statusPublished - 15 Aug 2008

    Fingerprint

    Dive into the research topics of 'Conduction of Na+ and K+ through the NaK channel: Molecular and brownian dynamics studies'. Together they form a unique fingerprint.

    Cite this