TY - JOUR
T1 - Cone Fields and Topological Sampling in Manifolds with Bounded Curvature
AU - Turner, Katharine
PY - 2013/12
Y1 - 2013/12
N2 - A standard reconstruction problem is how to discover a compact set from a noisy point cloud that approximates it. A finite point cloud is a compact set. This paper proves a reconstruction theorem which gives a sufficient condition, as a bound on the Hausdorff distance between two compact sets, for when certain offsets of these two sets are homotopic in terms of the absence of μ-critical points in an annular region. We reduce the problem of reconstructing a subset from a point cloud to the existence of a deformation retraction from the offset of the subset to the subset itself. The ambient space can be any Riemannian manifold but we focus on ambient manifolds which have nowhere negative curvature (this includes Euclidean space). We get an improvement on previous bounds for the case where the ambient space is Euclidean whenever μ≤0.945 (μ∈(0,1) by definition). In the process, we prove stability theorems for μ-critical points when the ambient space is a manifold.
AB - A standard reconstruction problem is how to discover a compact set from a noisy point cloud that approximates it. A finite point cloud is a compact set. This paper proves a reconstruction theorem which gives a sufficient condition, as a bound on the Hausdorff distance between two compact sets, for when certain offsets of these two sets are homotopic in terms of the absence of μ-critical points in an annular region. We reduce the problem of reconstructing a subset from a point cloud to the existence of a deformation retraction from the offset of the subset to the subset itself. The ambient space can be any Riemannian manifold but we focus on ambient manifolds which have nowhere negative curvature (this includes Euclidean space). We get an improvement on previous bounds for the case where the ambient space is Euclidean whenever μ≤0.945 (μ∈(0,1) by definition). In the process, we prove stability theorems for μ-critical points when the ambient space is a manifold.
KW - Deformation retraction
KW - Distance function
KW - Fibre bundle
KW - Surface and manifold reconstruction
UR - http://www.scopus.com/inward/record.url?scp=84887406879&partnerID=8YFLogxK
U2 - 10.1007/s10208-013-9176-6
DO - 10.1007/s10208-013-9176-6
M3 - Article
AN - SCOPUS:84887406879
SN - 1615-3375
VL - 13
SP - 913
EP - 933
JO - Foundations of Computational Mathematics
JF - Foundations of Computational Mathematics
IS - 6
ER -