Conical stochastic maximal Lp-regularity for 1≤ p < ∞

Pascal Auscher, Jan van Neerven*, Pierre Portal

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    11 Citations (Scopus)

    Abstract

    Let A = -div a(̇) ∇ be a second order divergence form elliptic operator on ℝn with bounded measurable real-valued coefficients and let W be a cylindrical Brownian motion in a Hilbert space H. Our main result implies that the stochastic convolution process, satisfies, for all 1≤ p<∞, a conical maximal Lp-regularity estimate.

    Original languageEnglish
    Pages (from-to)863-889
    Number of pages27
    JournalMathematische Annalen
    Volume359
    Issue number3-4
    DOIs
    Publication statusPublished - Aug 2014

    Fingerprint

    Dive into the research topics of 'Conical stochastic maximal Lp-regularity for 1≤ p < ∞'. Together they form a unique fingerprint.

    Cite this