TY - GEN
T1 - Consensus control of linear multi-agent systems under directed dynamic topology
AU - Qin, Jiahu
AU - Yu, Changbin
PY - 2013
Y1 - 2013
N2 - This paper aims to extend the nonnegative matrix theory, which is widely employed for multiple integrator agents, to deal with the consensus control of generic linear multi-agent systems (MASs) under directed dynamic topology. It is finally shown that the exponential consensus can be reached under very relaxed conditions, i.e., the directed interaction topology is only required to be repeatedly jointly rooted and the exponentially unstable mode of each individual system is weak enough. Moreover, a least convergence rate and a bound for the unstable mode of the individual agent system, both of which are independent of the switching mode, can be explicitly specified.
AB - This paper aims to extend the nonnegative matrix theory, which is widely employed for multiple integrator agents, to deal with the consensus control of generic linear multi-agent systems (MASs) under directed dynamic topology. It is finally shown that the exponential consensus can be reached under very relaxed conditions, i.e., the directed interaction topology is only required to be repeatedly jointly rooted and the exponentially unstable mode of each individual system is weak enough. Moreover, a least convergence rate and a bound for the unstable mode of the individual agent system, both of which are independent of the switching mode, can be explicitly specified.
UR - http://www.scopus.com/inward/record.url?scp=84893299572&partnerID=8YFLogxK
U2 - 10.23919/ecc.2013.6669557
DO - 10.23919/ecc.2013.6669557
M3 - Conference contribution
SN - 9783033039629
T3 - 2013 European Control Conference, ECC 2013
SP - 2807
EP - 2812
BT - 2013 European Control Conference, ECC 2013
PB - IEEE Computer Society
T2 - 2013 12th European Control Conference, ECC 2013
Y2 - 17 July 2013 through 19 July 2013
ER -