TY - JOUR
T1 - Constraining the X-Ray-Infrared Spectral Index of Second-timescale Flares from SGR 1935+2154 with Palomar Gattini-IR
AU - De, Kishalay
AU - Ashley, Michael C.B.
AU - Andreoni, Igor
AU - Kasliwal, Mansi M.
AU - Soria, Roberto
AU - Srinivasaragavan, Gokul P.
AU - Cai, Ce
AU - Delacroix, Alexander
AU - Greffe, Tim
AU - Hale, David
AU - Hankins, Matthew J.
AU - Li, Chengkui
AU - McKenna, Daniel
AU - Moore, Anna M.
AU - Ofek, Eran O.
AU - Smith, Roger M.
AU - Soon, Jamie
AU - Travouillon, Tony
AU - Zhang, Shuangnan
N1 - Publisher Copyright:
© 2020 The American Astronomical Society. All rights reserved.
PY - 2020/9/20
Y1 - 2020/9/20
N2 - The Galactic magnetar SGR 1935+2154 has been reported to produce the first example of a bright millisecond-duration radio burst (FRB 200428) similar to the cosmological population of fast radio bursts (FRBs). The detection of a coincident bright X-ray burst represents the first observed multiwavelength counterpart of an FRB. However, the search for similar emission at optical wavelengths has been hampered by the high inferred extinction on the line of sight. Here, we present results from the first search for second-timescale emission from the source at near-infrared (NIR) wavelengths using the Palomar Gattini-IR observing system in the J band, enabled by a novel detector readout mode that allows short exposure times of ≈0.84 s with 99.9% observing efficiency. With a total observing time of ≈12 hr (≈47,728 images) during its 2020 outburst, we place median 3σ limits on the second-timescale NIR fluence of ≲18 Jy ms (13.1 AB mag). The corresponding extinction-corrected limit is ≲125 Jy ms for an estimated extinction of A J = 2.0 mag. Our observations were sensitive enough to easily detect an NIR counterpart of FRB 200428 if the NIR emission falls on the same power law as observed across its radio to X-ray spectrum. We report nondetection limits from epochs of four simultaneous X-ray bursts detected by the Insight-HXMT and NuSTAR telescopes during our observations. These limits provide the most stringent constraints to date on fluence of flares at ∼1014 Hz, and constrain the fluence ratio of the NIR emission to coincident X-ray bursts to R NIR ≲ 0.025 (fluence index ⪆0.35).
AB - The Galactic magnetar SGR 1935+2154 has been reported to produce the first example of a bright millisecond-duration radio burst (FRB 200428) similar to the cosmological population of fast radio bursts (FRBs). The detection of a coincident bright X-ray burst represents the first observed multiwavelength counterpart of an FRB. However, the search for similar emission at optical wavelengths has been hampered by the high inferred extinction on the line of sight. Here, we present results from the first search for second-timescale emission from the source at near-infrared (NIR) wavelengths using the Palomar Gattini-IR observing system in the J band, enabled by a novel detector readout mode that allows short exposure times of ≈0.84 s with 99.9% observing efficiency. With a total observing time of ≈12 hr (≈47,728 images) during its 2020 outburst, we place median 3σ limits on the second-timescale NIR fluence of ≲18 Jy ms (13.1 AB mag). The corresponding extinction-corrected limit is ≲125 Jy ms for an estimated extinction of A J = 2.0 mag. Our observations were sensitive enough to easily detect an NIR counterpart of FRB 200428 if the NIR emission falls on the same power law as observed across its radio to X-ray spectrum. We report nondetection limits from epochs of four simultaneous X-ray bursts detected by the Insight-HXMT and NuSTAR telescopes during our observations. These limits provide the most stringent constraints to date on fluence of flares at ∼1014 Hz, and constrain the fluence ratio of the NIR emission to coincident X-ray bursts to R NIR ≲ 0.025 (fluence index ⪆0.35).
UR - http://www.scopus.com/inward/record.url?scp=85092231030&partnerID=8YFLogxK
U2 - 10.3847/2041-8213/abb3c5
DO - 10.3847/2041-8213/abb3c5
M3 - Article
SN - 2041-8205
VL - 901
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
IS - 1
M1 - L7
ER -